Algorithm of calculation and analysis of corrosive wear of side enclosures of glass furnace bath

Authors

  • Давид Владимирович Бекназарян National Technical University Kharkiv Politechnical Institute Frunze 16, Kharkov, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-1359-607X
  • Вадим Михайлович Кошельник National Technical University Kharkiv Politechnical Institute Frunze 16, Kharkov, Ukraine, 61166, Ukraine https://orcid.org/0000-0003-0230-0077
  • Алексей Александрович Ларин National Technical University Kharkiv Politechnical Institute Frunze 16, Kharkov, Ukraine, 61166, Ukraine https://orcid.org/0000-0002-5721-4400

DOI:

https://doi.org/10.15587/1729-4061.2014.24865

Keywords:

algorithm, corrosion of refractories, configuration of refractories, glass furnace, temperature field

Abstract

Corrosive wear of refractory materials when in contact with high-temperature melt is the main reason to stop the melting units for cold repair. In continuous fiery glass furnaces, side enclosure of melting chamber is exposed to the most widespread and intense destruction in the flux block-glass melt contact zone. Maximum corrosion rate is observed in the glass melting area, which is caused by the highest temperatures of combustion and melting products. In this regard, longitudinal section of side enclosure of the melting area was selected as the subject of the study. Using finite-element modeling, an algorithm that allows to calculate two-dimensional temperature field in the given section of refractory and insulating materials was developed. Based on the obtained data, thickness of destroyed refractory material for each nodal point of the finite element mesh on the flux block-glass melt boundary for a time period equal to one day is calculated. Furthermore, the flux block geometry is rebuilt considering the destroyed sites, and the calculation is repeated. The basis for finishing calculations is achieving a minimum flux block thickness. According to the operational data, this value is 40-50 mm. Also the analysis, confirming the appropriateness of the selected size of the finite element, used for model partitioning was conducted. Based on the algorithm, a software package, allowing to calculate temperature fields in the section of multilayer side enclosure of the melting chamber of the glass furnace, determine the service life of the enclosure, as well as to define the configuration of corrosive wear-prone sites of flux block was developed.

Author Biographies

Давид Владимирович Бекназарян, National Technical University Kharkiv Politechnical Institute Frunze 16, Kharkov, Ukraine, 61002

Department of Heat Engineering and Power Efficient Technologies

Вадим Михайлович Кошельник, National Technical University Kharkiv Politechnical Institute Frunze 16, Kharkov, Ukraine, 61166

Professor

Department of Heat Engineering and Power Efficient Technologies

Алексей Александрович Ларин, National Technical University Kharkiv Politechnical Institute Frunze 16, Kharkov, Ukraine, 61166

Associate professor

Department of Dynamics and Strength of Machines

References

  1. Дзюзер, В. Я Совершенствование методики расчёта теплового баланса регенеративной стекловаренной печи (окончание) [Текст] / В. Я. Дзюзер // Огнеупоры и техническая керамика. – 2008. – № 4. – С. 22–27.
  2. Allendorf, M. D. Thermodynamic analysis of silica refractory corrosion in glass-melting furnaces [Text] / M. D. Allendorf, K. E. Spear // Journal of the electrochemical society. – 2001. – Vol. 148 (2). – P. B59–B67.
  3. Дзюзер, В. Я. Огнеупоры для варочной части стекловаренных печей [Текст] / В. Я. Дзюзер// Огнеупоры и техническая керамика. – 2008. – №5. – С. 24–32.
  4. Dzyuzer, V. Ya. Electrofused AZS refractories for high-capacity glass-founding furnaces [Text] / V. Ya. Dzyuzer // Refractories and industrial ceramics. 2013. – Vol. 54 (4), – P. 304–306.
  5. Tokarev, V. D. Analysis of service of refractories in glass-melting tank furnaces [Тext] / V. D. Tokarev, S. S. Igat’ev, O. N. Popov // Glass and ceramics. – 2006. – Vol. 63(5-6). – P. 154–157.
  6. Sokolov, V. A. Fusion-cast chromium-bearing refractories - the most durable materials in aggressive melts [Тext] / V. A. Sokolov, M. D. Gasparyan // Refractories and industrial ceramics. –2011. – Vol. 52 (2). – P. 146–150.
  7. Будов, В. М. Продление межремонтного периода работы стекловаренных печей – резерв увеличения выпуска листового стекла [Текст] / В.М. Будов// Стекло и керамика. – 1975. – №4. – С. 4–7.
  8. Rahimi, R. A. Corrosion behavior of ZrO2–SiO2–Al2O3 refractories in lead silicate glass melts [Text] / R. A. Rahimi, A. Ahmadi, S. Kakooei, Sadrnezhaad, S.K. Sadrnezhaad // Journal of the european ceramic society. – 2011. – Vol. 31 (5). – P. 715–721.
  9. Ermakov, I. N. New refractory materials for construction and overhaul of glass furances [Text] / I. N. Ermakov, V. V. Skurikhin // Glass and ceramics. 2006. – Vol. 63 (9–10). – Р. 351–355.
  10. Skurikhin, V. V. Traditional and new refractory materials for construction and repair of glass–melting furnaces [Text] / V. V. Skurikhin, I. N. Ermakov // Glass and ceramics. – 2004. – Vol. 61 (9-10) – С. 346–351.
  11. Дзюзер В. Я. Эффективное применение электроплавленных бадделеитокорундовых огнеупоров в высокотемператруных стекловаренных печах (часть I) [Текст] / В. Я. Дзюзер // Огнеупоры и техническая керамика. – 2004. – № 6. – С. 45–49.
  12. Кучерявый М.Н. Кинетика коррозии огнеупоров расплавом многощелочного тарного стекла [Текст] / М. Н. Кучерявый // Стекло и керамика. – 1985. – № 3. – С. 22–27
  13. Кошельник В. М. Прогнозирование температурного состояния и срока службы ограждения ванной стекловаренной печи [Текст] / В. М Кошельник, Д. В. Бекназарян., Е. В. Хавин // Вісник НТУ „ХПІ” – 2012. – № 8. – С. 178–183.
  14. Товажнянский Л. Л. Интегрированные энергосберегающие теплотехнологии в стекольном производстве: монография [Текст] / Л. Л. Товажнянский, В. М. Кошельник, В. В. Соловей, А. В. Кошельник; под ред. В.М. Кошельника. – Х.: НТУ «ХПИ», 2008. − 628 с.
  15. Dzyuzer, V. Ya. (2008). Improvement of computation technique of heat balance of regenerative glass furnace (completion). Re-fractories and industrial ceramics, 4, 22–27.
  16. Allendorf, M. D., Spear, K. E. (2001). Thermodynamic analysis of silica refractory corrosion in glass–melting furnaces. Journal of the electrochemical society, 148 (2), B59–B67.
  17. Dzyuzer, V. Ya. (2008). Refractories for melting zone of glass furnaces. Refractories and industrial ceramics, 5, 24–32.
  18. Dzyuzer, V. Ya. (2013). Electrofused AZS refractories for high– capacity glass–founding furnaces. Refractories and industrial ceramics, 54 (4), 304–306.
  19. Tokarev, V. D., Igat’ev, S. S., Popov, O. N. (2006). Analysis of service of refractories in glass–melting tank furnaces. Glass and ceramics, 63 (5–6), 154–157.
  20. Sokolov, V. A., Gasparyan, M. D. (2011). Fusion–cast chromium–bearing refractories – the most durable materials in aggres¬sive melts. Refractories and industrial ceramics, 52 (2), 146–150.
  21. Budov, V. M. (1975). Prolongation of overhaul time of glass furnases – reserve of increase in output of sheet glass. Moscow, USSR, Glass and ceramics, 4, 4–7.
  22. Rahimi, R. A., Ahmadi, A., Kakooei, S., Sadrnezhaad, S. K. (2011). Corrosion behavior of ZrO2–SiO2–Al2O3 refractories in lead silicate glass melts. Journal of the european ceramic soci¬ety, 31 (5), 715–721.
  23. Ermakov, I. N. Skurikhin, V. V. (2006). New refractory materials for construction and overhaul of glass furances. Glass and ceram¬ics, 63 (9–10), 351–355.
  24. Skurikhin, V. V., Ermakov, I. N. (2004). Traditional and new refractory materials for construction and repair of glass–melting furnaces. Glass and ceramics, 61 (9–10), 346–351.
  25. Dzyuzer, V. Ya. (2004). Effective use of electrocast brazilite–co¬rundum refractories in high–temperature glass furnaces (part I). Refractories and industrial ceramics, 6, 45–49.
  26. Kucheryavij, M. N. (1985). Refractory corrosion kinetics by multialkali container glass melt. Moscow, USSR, Glass and ce-ramics, 3, 22–27.
  27. Koshelnik, V. M., Becknazaryan, D. V., Havin, E. V. (2012). Forecast of temperature condition and working life of glass furnasce enclosure. Visnyk NTU «KhPI», 8, 178–183.
  28. Tovagnyanskij, L. L., Koshelnik, V. M., Solovej, V. V., Koshelnik, A. V. (2008). Integrate energy-saving heat-technologies in glasswork: monograph; edited by Koshelnik, V. M. Kharkov, Ukraine, NTU «KhPI», 628.

Published

2014-06-25

How to Cite

Бекназарян, Д. В., Кошельник, В. М., & Ларин, А. А. (2014). Algorithm of calculation and analysis of corrosive wear of side enclosures of glass furnace bath. Eastern-European Journal of Enterprise Technologies, 3(8(69), 27–33. https://doi.org/10.15587/1729-4061.2014.24865

Issue

Section

Energy-saving technologies and equipment