Free vibrations and seismic resistance of three-layer non-homogeneous orthotropic rectangular plates

Authors

  • Санан Низами оглы Гараисаев Azerbaijan University of Architecture and Construction Baku, A. Sultanov Str.5/Az1073, Azerbaijan

DOI:

https://doi.org/10.15587/1729-4061.2014.24866

Keywords:

three-layer, orthotropic plates, non-homogeneous, elasticity characteristics, vibration, amplitude-frequency characteristics

Abstract

The problem of seismic resistance and free vibration of three-layer non-homogeneous, orthotropic rectangular plates, which layers are made of various, continuously non-homogeneous materials, is considered in the paper. It is assumed that elasticity characteristics of the material for layers are continuous functions of the plate thickness coordinate. Using the Kirchhoff-Love hypothesis for the entire thickness of the element, the expressions for forces and moments were obtained, as well as integrated stiffness characteristics for the three-layer orthotropic plate under consideration were determined. In general form, equation systems of the plate motion in both exact and approximate formulations were obtained. In the approximate formulation of the problem, two motion equations of the problem with respect to the deflection and the stress function were obtained. For the case of the plate pin-edge fixing, the problem solution was made and the formula for determining free vibrations of the plate was found. When making numerical calculations, the elasticity characteristics of the material for layers were taken as linear in relation to the thickness coordinates. 

Author Biography

Санан Низами оглы Гараисаев, Azerbaijan University of Architecture and Construction Baku, A. Sultanov Str.5/Az1073

Doctorant

Department of Teoretickal and Construction mechanics

References

  1. Вольмир, А. С. Устойчивость деформируемых систем [Текст] / А. С. Вольмир. – М.; Наука, 1967. – 984 с.
  2. Ломакин, В. А. Теория упругости неоднородных тел [Текст] / Ломакин, В. А. – М., изд–во МГУ, 1978. – 245 с.
  3. Алфутов, Н. А. Расчеты многослойных пластин и оболочек из композиционных материалов [Текст] / Н. А.Алфутов, П. А. Зиновьев, Б. Г. Попов. – М.;Машиностроение, 1984. – 264 с.
  4. Rajasekaran, S. Stability and Vibration analysis of non-prismaticthin-walled composite spatial member sofgeneric section [Text] / S. Rajasekaran, K. Nalinaa // J.Appl.Mechanics. – 2010. – Vol. 77, № 3. – P. 310–319.
  5. Arshad, S. H. Vibration analysis of bilayered FGM cylindricalshells [Text] / S. H. Arshad, M. N. Naeem, N. Sultana, A. G. Shah, Z. Iqbal // J.Appl.Mechanics. – 2011. – Vol. 81, № 8. – P. 319–343.
  6. Viswanathan, K. K. Jang Hyun Lee. Zainal Abdul Aziz. Free vibration of symmetric angle-ply laminated cylindrical shells of variable thickness [Text] / K. K. Viswanathan, Jang Hyun Lee, Zainal Abdul Aziz //J.Acta Mechanica. – 2011. – Vol. 221, № 10. – P. 309–319.
  7. Alibeigloo, A. Free vibration analysis of nano-plate using three-dimensional theory of elasticity [Text] / A. Alibeigloo // J.Acta Mechanica. – 2011. – Vol. 222, № 11. – P. 149–159.
  8. Li, Peng The aeroelastic stability and bifurcation structure of subsonic nonlinear thin panels subjected to external excitation [Text] / Peng Li, Yiren Yang, Wei Xu, Guo Chen // J.Arch.Appl.Mech. – 2012. – Vol. 82. – P. 1251–1267.
  9. Avades, K. Free vibration analysis of laminated composite plates with elastical lyrestained edges using FEM [Text] / K. Avades, N. D. Sharma // CentralEuropeanJournalof Engineering. – 2013. – Vol. 3, № 2. – P. 306–315.
  10. Peng, Zhang Seismic Control of Power Transmission Tower Using Pounding TMD [Text] / Zhang Peng, Song Ganding, Li Hong-Nan, Lin You-Xin // J. Eng. Mech. – 2013. – Vol. 139 (10). – P. 1395–1406.
  11. Volmir, A. S. (1967). Stability of deformable systems. Moscow, USSR: Nauka, 984.
  12. Lomakin, V. A. (1978). The theory of elasticity of inhomogeneous bodies. Moscow, USSR: Moscov State University Press, 245.
  13. Alfutov, N. A., Zinoviev, P. A., Popov, B. G. (1984). Calculations of laminated plates and shells made of composite materials. Moscow, USSR: Mechanical Engineering, 264.
  14. Rajasekaran, S., Nalinaa, K. (2010). Stability and Vibration analysis of non-prismatic thin-walled composite spatial members of generic section, J. Appl. Mechanics, Vol. 77, № 3, 310–319.
  15. Arshad, S. H., Naeem, M. N., Sultana, N., Shah, A. G., Iqbal, Z. (2011). Vibration analysis of bilayered FGM cylindrical shells. J. Appl. Mechanics, Vol. 81 , № 8, 319–343.
  16. Viswanathan, K. K., Jang, Hyun Lee, Zainal, Abdul Aziz (2011). Free vibration of symmetric angle-ply laminated cylindrical shells of variable thickness. J. Acta Mechanica, Vol. 221, № 10, 309–319.
  17. Alibeigloo, A. (2011). Free vibration analysis of nano-plate using three-dimensional theory of elasticity. J.Acta Mechanica, Vol. 222, № 11, 149–159.
  18. Li, Peng, Yang, Yiren, Xu, Wei, Chen, Guo (2012). On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin panels subjected to external excitation. J. Arch. Appl. Mech., 82, 1251–1267.
  19. Avades, K., Sharma, N. D. (2013). Free vibration analysis of laminated composite plates with elasticallyrestained edges using FEM. .Central European Journal of Engineering, Vol. 3, № 2, 306–315.
  20. Peng, Zhang, Gangbing, Song, Hong-Nan, Li, You-Xin, Lin (2013). Seismic Control of Power Transmission Tower Using Pounding TMD. J. Eng. Mech., Vol. 139, № 10, 1395–1406.

Published

2014-06-20

How to Cite

Гараисаев, С. Н. о. (2014). Free vibrations and seismic resistance of three-layer non-homogeneous orthotropic rectangular plates. Eastern-European Journal of Enterprise Technologies, 3(7(69), 4–7. https://doi.org/10.15587/1729-4061.2014.24866

Issue

Section

Applied mechanics