Queuing time and utilization ratio in markov queuing systems
DOI:
https://doi.org/10.15587/1729-4061.2014.24901Keywords:
queuing system, Markov chain, queuing time, downtime, utilization ratio of statesAbstract
In many cases two variables such as utilization ratio (relative characteristic) and queuing time (absolute characteristic) are enough to assess the efficiency of a queuing system. The literature contains formulas for calculating utilization and downtime ratios as constants.
In the paper, queuing time and utilization ratio are obtained as a function of time. This allows to investigate them in dynamics.
For the queuing system S, set as a Markov chain with continuous time and finite number of states where n is the number of system state, the formulas for calculating the queuing time (downtime) in any state are obtained. Queuing time in the i-th state for the time interval can be calculated using the formula.
The formulas for calculating the time of appearance and disappearance of queues, time intervals of the queue existence in any state of the system are obtained. The formulas for calculating the time of the beginning, end and duration of service in any state are obtained. The formulas of dependencies of utilization ratio of any system state on the time are obtained.
Calculating the above functions for the unloading terminal of freight rail hub is given as an example of using the obtained formulas.
References
- Каштанов, В. А. Теория массового обслуживания [Текст] / В. А. Каштанов. – М. : ЮНИТИ, 2008. – 230 с.
- Гнеденко, Б. В. Введение в теорию массового обслуживания [Текст] / Б. В. Гнеденко, И. Н. Коваленко; 2-е изд.,перераб. и доп. – М. : Наука: гл. ред. физ.-мат. лит., 1987. – 336 с.
- Хинчин, А. Я. Работы по математической теории массового обслуживания [Текст] / А. Я. Хинчин. – М. : Физматгиз, 1963. – 156 с.
- Клейнрок, Л. Теория массового обслуживания [Текст] / Л. Клейнрок; пер. с англ. И. И. Грушко; ред. В. И. Нейман. – М. : Машиностроение, 1979. – 432 с.
- Вентцель, Е. С. Исследование операций [Текст] / Е. С. Вентцель. – М. : Сов. радио, 1972. – 320 с.
- Вентцель, Е. С. Теория вероятности [Текст] / Е. С. Вентцель; 3-е изд., перераб. – М. : Инфра-М, 2004. – 178 с.
- Овчаров, Л. А. Прикладные задачи теории массового обслуживания [Текст] / Л. А. Овчаров. – М. : Машиностроение, 1969. – 177 с.
- Кофман, А. Массовое обслуживание. Теория и приложения [Текст] / А. Кофман, Р. Крюон. – М.: Мир, 1965. – 265 с.
- Тараканов, К. В. Аналитические методы исследования систем [Текст] / К. В. Тараканов, Л. А. Овчаров, А. Н. Тырышкин. – М. : Сов. радио, 1974. – 217 с.
- Lomotko, D. V. Dynamics distribution of mathematical expectations of number of vans in cargo rail junction [Electronic resource] / D. V. Lomotko, S. D. Bronza, M. Zh. Ovchiev // Materials of the international research and practice conference (Science, Technology and Higher Education), December 11-12, 2012, Westwood, Canada. – Available at: http://science-canada.com/12-2012-2.pdf.
- Kashtanov, V. A. (2008). Queueing Theory. M.: IUNITI, 230.
- Venttcel, E. S. (2004). Theory of probability. 3rd ed., revised. M.: Infra-M, 178.
- Gnedenko, B. V., Kovalenko, I. N. (1987). Introduction in Queueing Theory. 2nd ed., revised and supplemented. Nauka: High ed. ph.-mat. lit., 336.
- Cleinrok, L. (1979). Queueing Theory. Mashinostroenie, 432.
- Tarakanov, K. V., Ovcharov, L. A., Tyryshkin, A. N. (1974). Analytical methods of research systems. M.: Sov.radio, 320.
- Venttcel, E. S. (1972). Operations research. Sov.radio, 178.
- Ovcharov. L. A. (1969). Applied problems in queuing theory. Mashinostroenie, 177.
- Kofman, A., Kriuon, R. (1965). Queueing. Theory and Applications. Mir, 265.
- Hinchin, A. Ia. (1963). Work on the mathematical theory of queuing. Fizmatgiz, 217.
- Lomotko, D. V., Bronza, S. D., Ovchiev, M. Zh. (2012). Dynamics distribution of mathematical expectations of number of vans in cargo rail junction. Westwood, Canada: Science, Technology and Higher Education. Available at: http://science-canada.com/12-2012-2.pdf.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Семен Давыдович Бронза, Наталия Семеновна Юрчак, Ольга Александровна Гончарова, Мурад Жораевич Овчиев
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.