Establishing the influence of technical and technological parameters of milking equipment on the efficiency of machine milking

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.251172

Keywords:

milking equipment, milking machine, teat rubber, vacuum system, milk yield rate

Abstract

One of the tasks that imply increasing the milk productivity of cows is to create optimal maintenance conditions that ensure the increased use of the genetic potential of cattle based on the implementation of engineering and technological solutions.

A mathematical model has been built that links the technical and technological parameters of the vacuum system of milking equipment, namely, the value of the working vacuum P, the pulsation frequency n, the ratio of pulsation cycles, and the tension strength of milking rubber FH to cows’ milk yield rate V. The range of milking plant operating parameters for milking in the milk line has been determined, at which the milk yield rate is maximum: P=52 kPa, n=57.6–58.8 min–1, δ=0.59–0.64, FH=59.3–60.4 H. Under these parameters, the milk yield rate is V=1.48–1.53 l/min.

The results of the multifactor experiment have helped construct an adequate mathematical model of the second order, which confirms the theoretical dependence of the influence of the technical and technological parameters of the vacuum system of milking equipment on milk yield rate and the air flow of the milking machine. Analysis of the mathematical model has made it possible to establish the rational structural and technological parameters for the vacuum system of a milking machine: the value of the working vacuum, P=50.6 kPa; pulsation frequency, n=55.9 min–1, the ratio of pulsation cycles and the tension force of milking rubber FH=64.8 H. Under these parameters, the milk yield rate is maximum: V=1.47–1.52 l/min; the air flow consumption of the milking machine is Q=2.19 m3/h.

The mathematical model built fully reveals the influence of technical and technological parameters of milking equipment on the efficiency of machine milking. Owing to this, the issue related to the rational choice of equipment is resolved.

Author Biographies

Elchyn Aliiev, Dnipro State Agrarian and Economic University

Doctor of Technical Sciences, Professor, Senior Researcher

Department of Mechanization of Production Processes in Animal Husbandry

Andriy Paliy, State Biotechnological University

Doctor of Agricultural Sciences, Professor

Department of Technologies Animal Husbandry and Poultry

Viktor Kis, State Biotechnological University

PhD, Associate Professor

Department of Mekhatronics and Mashine Parts

Anatoliy Paliy, National Scientific Center «Institute of Experimental and Clinical Veterinary Medicine»

Doctor of Veterinary Sciences, Professor

Laboratory of Veterinary Sanitation and Parasitology

Roman Petrov, Sumy National Agrarian University

Doctor of Veterinary Sciences, Professor

Department of Virusology, Patanatomy and Bird Diseases

Larysa Plyuta, Sumy National Agrarian University

PhD, Associate Professor

Department of Anatomy, Normal and Pathological Physiology

Oleksandr Chekan, Sumy National Agrarian University

PhD, Associate Professor

Department of Obstetrics and Surgery

Oleksii Musiienko, Veterinary Clinic "Vet Service"

PhD, Associate Professor, Scientific Consultant

Vitalii Ukhovskyi, State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise

Doctor of Veterinary Sciences, Professor

Department of Epizootology

Leonid Korniienko, State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise

Doctor of Veterinary Sciences, Professor

Department of Epizootology

References

  1. Kurak, A. S. (2011). Tandem “tekhnyka-korova” – vazhnoe zveno v tekhnolohiy mashynnoho doenyia. Nashe selskoe khoziaistvo, 8, 59–61.
  2. Ferneborg, S., Stadtmüller, L., Pickova, J., Wiking, L., Svennersten-Sjaunja, K. (2016). Effects of automatic cluster removal and feeding during milking on milking efficiency, milk yield and milk fat quality. Journal of Dairy Research, 83 (2), 180–187. doi: https://doi.org/10.1017/s0022029916000170
  3. Pezzuolo, A., Cillis, D., Marinello, F., Sartori, L. (2017). Estimating efficiency in automatic milking systems. Contents of Proceedings of 16th International Scientific Conference Engineering for Rural Development, 736–741. doi: https://doi.org/10.22616/erdev2017.16.n148
  4. Odorčić, M., Rasmussen, M. D., Paulrud, C. O., Bruckmaier, R. M. (2019). Review: Milking machine settings, teat condition and milking efficiency in dairy cows. Animal, 13, s94–s99. doi: https://doi.org/10.1017/s1751731119000417
  5. Palii, А. P., Handola, Yu. M., Shevchenko, I. O., Stotskyi, A. O., Stotskyi, O. G., Sereda, A. I. et. al. (2020). Assessment of cow lactation and milk parameters when applying various milking equipment. Ukrainian Journal of Ecology, 10 (4), 195–201. Available at: https://www.ujecology.com/articles/assessment-of-cow-lactation-and-milk-parameters-when-applying-various-milking-equipment.pdf
  6. Dmytriv, V., Dmytriv, I., Lavryk, Y., Horodeckyy, I. (2018). Models of adaptation of the milking machines systems. BIO Web of Conferences, 10, 02004. doi: https://doi.org/10.1051/bioconf/20181002004
  7. Tremblay, M., Hess, J. P., Christenson, B. M., McIntyre, K. K., Smink, B., van der Kamp, A. J. et. al. (2016). Factors associated with increased milk production for automatic milking systems. Journal of Dairy Science, 99 (5), 3824–3837. doi: https://doi.org/10.3168/jds.2015-10152
  8. Paliy, A. P., Ishchenko, K. V., Palii, A. P. (2021). Effect of various milking equipment on milk ejection in high-yielding cows. Ukrainian Journal of Ecology, 11 (1), 18–24. doi: https://doi.org/10.15421/2020_303
  9. Gaworski, M., Kamińska, N., Kic, P. (2017). Evaluation and optimization of milking in some Polish dairy farms differed in milking parlours. Agronomy Research, 15 (1), 112–122. Available at: https://www.researchgate.net/publication/317746017_Evaluation_and_optimization_of_milking_in_some_polish_dairy_farms_differed_in_milking_parlours
  10. Fahim, A., Kamboj, M., Sirohi, A., Bhakat, M., Prasad, S., Gupta, R. (2018). Milking machine induced teat reactions in crossbred cows milked in automated herringbone milking parlour. Indian Journal of Animal Science, 88 (12), 1412–1415.
  11. Grinchenko, V. A., Laguta, I. I. (2014). Problemy mashinnogo doeniya i puti ikh resheniya. Novye zadachi tekhnicheskikh nauk i puti ikh resheniya. Ufa: Aeterna, 17–18.
  12. Lutsenko, M., Zvoleiko, D. (2012). Doslidzhennia protsesu doinnia koriv u spetsializovanykh doilnykh zalakh. Tekhnika i tekhnolohiyi APK, 9 (36), 31–34.
  13. Dmytriv, V. T. (2006). Alhorytmizatsiya protsesu mashynnoho doinnia koriv. Pratsi Tavriyskoi derzhavnoi ahrotekhnichnoi akademiyi, 40, 36–41.
  14. Grigor'ev, D. A., Sosin, I. P. (2013). Osobennosti sovremennykh doil'nykh mashin. Sovremennye tekhnologii sel'skokhozyaystvennogo proizvodstva. Veterinariya. Zootekhniya: sbornik nauchnykh statey po materialam XVII mezhdunarodnoy nauchno-prakticheskoy konferentsii. Grodno, 341–343.
  15. Golisz, E., Kupczyk, A., Majkowska, M., & Trajer, J. (2021). Simulation Tests of a Cow Milking Machine – Analysis of Design Parameters. Processes, 9 (8), 1358. doi: https://doi.org/10.3390/pr9081358
  16. Radu, R., Ioan, T., Petru, C. (2017). Assessment of the milking machine parameters using a computer driven test system. Journal of Agricultural Informatics, 8 (1), 32–44. doi: https://doi.org/10.17700/jai.2017.8.1.321
  17. Paliy, A., Nanka, A., Marchenko, M., Bredykhin, V., Paliy, A., Negreba, J. et. al. (2020). Establishing changes in the technical parameters of nipple rubber for milking machines and their impact on operational characteristics. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 78–87. doi: https://doi.org/10.15587/1729-4061.2020.200635
  18. Achkevych, V. I., Khmelevsky, V. S., Achkevych, O. M. (2020). The influence of the design parameters of the milking machine collector on the oscillation of the vacuum pressure in the suction phase. Mechanization and electrification of agriculture, 11 (110), 117–123. doi: https://doi.org/10.37204/0131-2189-2020-11-13
  19. Dmytriv, V. T. (2006). Model vytraty povitria elementamy doilnoho aparata. Visnyk Lvivskoho derzhavnoho ahrarnoho universytetu: Ahroinzhenerni doslidzhennia, 10, 483–488.
  20. Enokidani, M., Kawai, K., Shinozuka, Y., Watanabe, A. (2016). Milking performance evaluation and factors affecting milking claw vacuum levels with flow simulator. Animal Science Journal, 88 (8), 1134–1140. doi: https://doi.org/10.1111/asj.12741
  21. Adamchuk, V. V., Dmytriv, I. V. (2018). Funktsionalna realizatsiya adaptyvnoho doilnoho aparata. Materialy VI-yi Naukovo-tekhnichnoi konferentsiyi «Tekhnichnyi prohres u tvarynnytstvi ta kormovyrobnytstvi». Hlevakha, 6–8.
  22. Zabolotko, O. O., Darchyk, P. D. (2013). Analiz parametriv vyvedennia moloka doilnymy aparatamy. Pratsi Tavriyskoho derzhavnoho ahrotekhnolohichnoho universytetu, 13 (1), 45–49.
  23. Palii, A. P. (2019). Annotation research of work pulsator milking apparatus and influence of their working parameters on the indicators of milk removal in cows. Zbirnyk naukovykh prats: Ahrarna nauka ta kharchovi tekhnolohiyi, 3 (106), 83–90. Available at: http://nbuv.gov.ua/UJRN/anxt_2019_3_10
  24. Paliy, A., Aliiev, E., Nanka, A., Bogomolov, O., Bredixin, V., Paliy, A. et. al. (2021). Identifying changes in the technical parameters of milking rubber under industrial conditions to elucidate their effect on the milking process. Eastern-European Journal of Enterprise Technologies, 3 (1 (111)), 21–29. doi: https://doi.org/10.15587/1729-4061.2021.231917
  25. Demba, S., Ammon, C., Rose-Meierhöfer, S. (2018). The influence of different milking settings on the measured teat load caused by a collapsing liner. Computers and Electronics in Agriculture, 153, 54–61. doi: https://doi.org/10.1016/j.compag.2018.08.011
  26. Paliy, A., Naumenko, A., Paliy, A., Zolotaryova, S., Zolotarev, A., Tarasenko, L. et. al. (2020). Identifying changes in the milking rubber of milking machines during testing and under industrial conditions. Eastern-European Journal of Enterprise Technologies, 5 (1 (107)), 127–137. doi: https://doi.org/10.15587/1729-4061.2020.212772
  27. Borodin, S. A., Andrianov, E. A., Andrianov, A. A., Tertychnaya, T. N. (2020). Sub stantiating Design Parameters of a multi functional milking machine. Journal of mechanics of continua and mathematical sciences, 8, 176–190. doi: https://doi.org/10.26782/jmcms.spl.8/2020.04.00014
  28. Palii, А. P., Mihalchenko, S. A., Chechui, H. F., Reshetnichenko, A. P., Rozum, Y. E., Bredykhin, V. V. et. al. (2020). Milking and udder health assessment in industrial farming. Ukrainian Journal of Ecology, 10 (2), 375–381. Available at: https://www.ujecology.com/articles/milking-and-udder-health-assessment-in-industrial-farming.pdf
  29. Bykovskaya, N. V. (2015). Innovatsii v molochnom skotovodstve. Innovatsii, 4, 215–217.
  30. Paliy, A., Aliiev, E., Paliy, A., Ishchenko, K., Shkromada, O., Musiienko, Y. et. al. (2021). Development of a device for cleansing cow udder teats and testing it under industrial conditions. Eastern-European Journal of Enterprise Technologies, 1 (1 (109)), 43–53. doi: https://doi.org/10.15587/1729-4061.2021.224927
  31. Krasovskiy, G. I., Filaretov, G. F. (1982). Planirovanie eksperimenta. Minsk: Izd-vo BGU, 302.
  32. Hnasevych, N. V., Honcharuk, T. V., Huryk, M. I. et. al.; Honcharuk, T. V. (Ed.) (2014). Osnovy naukovykh doslidzhen. Ternopil, 272.
  33. Kopylova, I. B. (2017). Metody obrabotki eksperimental'nykh dannyakh. Blagoveschensk: Izd-vo AmGU, 48.
  34. Uzhik, V. F., Shakhov, V. A., Teteryadchenko, A. I., Nekipelov, S. I., Kitaeva, O. V., Kabashko, A. A. (2017). K obosnovaniyu konstruktivno-rezhimnykh parametrov pnevmoregulyatora vakuummetricheskogo davleniya adaptivnogo doil'nogo apparata. Izvestiya Orenburgskogo agrarnogo universiteta, 3 (65), 101–105.
  35. Uzhik, V. F., Klesov, D. N., Kitaeva, O. V. (2018). K izmeneniyu konstruktivno-rezhimnykh parametrov pul'satora doil'nogo apparata. Nauchnaya zhizn', 12, 37–44.
  36. Dmytriv, I., Krasnytsia, B. (2017). Analysis of methods and means for evaluating the parameters of modern milking systems. Visnyk LNAU: Ahrarni doslidzhennia, 21, 134–140.
  37. Aliev, E. B. (2012). Doslidzhennia metrolohichnykh kharakterystyk komplektu ustatkuvannia kontroliu vakuummetrychnykh parametriv molochno-doilnoho obladnannia. Materialy mizhnar. nauk.-prakt. konf.: Ahrarna nauka ta praktyka na suchasnomu etapi rozvytku: dosvid, problemy ta shliakhy yikh vyrishennia. Lviv, 13–15.
  38. Nørstebø, H., Dalen, G., Rachah, A., Heringstad, B., Whist, A. C., Nødtvedt, A., Reksen, O. (2019). Factors associated with milking-to-milking variability in somatic cell counts from healthy cows in an automatic milking system. Preventive Veterinary Medicine, 172, 104786. doi: https://doi.org/10.1016/j.prevetmed.2019.104786

Downloads

Published

2022-02-24

How to Cite

Aliiev, E., Paliy, A., Kis, V., Paliy, A., Petrov, R., Plyuta, L., Chekan, O., Musiienko, O., Ukhovskyi, V., & Korniienko, L. (2022). Establishing the influence of technical and technological parameters of milking equipment on the efficiency of machine milking. Eastern-European Journal of Enterprise Technologies, 1(1 (115), 44–55. https://doi.org/10.15587/1729-4061.2022.251172

Issue

Section

Engineering technological systems