# Devising a procedure to forecast the level of chemical damage to the atmosphere during active deposition of dangerous gases

## Authors

• Andrii Melnichenko National University of Civil Defence of Ukraine, Ukraine
• Maksym Kustov National University of Civil Defence of Ukraine, Ukraine
• Oleksii Basmanov National University of Civil Defence of Ukraine, Ukraine
• Olexandr Tarasenko National University of Civil Defence of Ukraine, Ukraine
• Oleg Bogatov Kharkiv National Automobile and Highway University, Ukraine
• Mikhail Kravtsov Kharkiv National Automobile and Highway University, Ukraine
• Olena Petrova Mykolayiv National Agrarian University, Ukraine
• Tetiana Pidpala Mykolayiv National Agrarian University, Ukraine
• Olena Karatieieva Mykolayiv National Agrarian University, Ukraine
• Natalia Shevchuk Mykolayiv National Agrarian University, Ukraine

## Keywords:

dangerous gases, deposition of hazardous substance, forecasting of the scale of pollution, localization of the affected area

## Abstract

This paper reports a procedure devised to forecast the level of chemical pollution of the atmosphere, which includes a mathematical model for the distribution of the concentration of dangerous gas in the atmosphere at its active deposition by dispersed jets of liquid, as well as a technique for its implementation. Based on the differential equations of gas distribution in space, a phased model of the propagation of a cloud of a dangerous chemical substance was built. The model describes stages in the discharge of a dangerous gaseous substance from emergency technological equipment, the deposition of dangerous gas by a finely-dispersed flow, and free propagation of the cloud in the air. The reported mathematical model makes it possible to calculate the size of pollution zones while determining the boundary safety conditions. When forecasting, the main meteorological parameters, the width of the deposition zone, and the chemical properties of both the gas and liquid are taken into consideration. The comparative analysis of the results of forecasting a conditional zone of chemical damage with the free propagation of the cloud, and at the active deposition by precipitation or technical devices, was carried out. The simulation results revealed that with an increase in the wind speed from 1 m/s to 5 m/s, the size of the affected area increases by 2.7 times, while the concentration of dangerous gas in the cloud falls by 2.5‒3 times. An algorithm has been proposed for integrating the devised methodology of forecasting the level of chemical pollution of the atmosphere into a general cycle of emergency management. It should be especially noted that the devised procedure contains the entire range of components that are necessary for its practical application. It includes a description of the procedure and practical recommendations for the use of the proposed technique in the elimination of emergencies, as well as a list of probable events when the use of the developed procedure would be most effective.

## Author Biographies

### Andrii Melnichenko, National University of Civil Defence of Ukraine

Teacher

Department of Logistics and Technical Support of Rescue Operations

### Maksym Kustov, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Associate Professor

Scientific Department on Problems of Civil Defense, Technogenic and Ecological Safety

### Oleksii Basmanov, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Professor

Scientific Department on Problems of Civil Defense, Technogenic and Ecological Safety

### Olexandr Tarasenko, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Professor

Department of Physical and Mathematical Sciences

### Oleg Bogatov, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Metrology and Industrial Safety

### Mikhail Kravtsov, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Metrology and Industrial Safety

### Olena Petrova, Mykolayiv National Agrarian University

PhD, Associate Professor

Department of Technology of Processing, Standardization and Certification of Livestock Products

### Tetiana Pidpala, Mykolayiv National Agrarian University

Doctor of Agricultural Sciences, Professor

Department of Technology of Processing, Standardization and Certification of Livestock Products

### Olena Karatieieva, Mykolayiv National Agrarian University

PhD, Associate Professor

Departament Genetics, Animal Feeding and Biotechnology

### Natalia Shevchuk, Mykolayiv National Agrarian University

PhD

Department of Technology of Processing, Standardization and Certification of Livestock Products

## References

1. Oggero, A., Darbra, R., Munoz, M., Planas, E., Casal, J. (2006). A survey of accidents occurring during the transport of hazardous substances by road and rail. Journal of Hazardous Materials, 133 (1-3), 1–7. doi: https://doi.org/10.1016/j.jhazmat.2005.05.053
2. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
3. Poluyan, L. V., Syutkina, E. V., Guryev, E. S. (2017). Software Systems for Prediction and Immediate Assessment of Emergency Situations on Municipalities Territories. IOP Conference Series: Materials Science and Engineering, 262, 012199. doi: https://doi.org/10.1088/1757-899x/262/1/012199
4. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et. al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
5. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77. Available at: http://29yjmo6.257.cz/bitstream/123456789/9380/1/Poll%20Res-10_proof.pdf
6. Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664. Available at: http://iwww.ptmts.org.pl/jtam/index.php/jtam/article/view/v52n3p655/1869
7. Malmén, Y., Nissilä, M., Virolainen, K., Repola, P. (2010). Process chemicals – An ever present concern during plant shutdowns. Journal of Loss Prevention in the Process Industries, 23 (2), 249–252. doi: https://doi.org/10.1016/j.jlp.2009.10.002
8. Hapon, Y., Kustov, M., Kalugin, V., Savchenko, A. (2021). Studying the Effect of Fuel Elements Structural Materials Corrosion on their Operating Life. Materials Science Forum, 1038, 108–115. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.108
9. Bundy, J., Pfarrer, M. D., Short, C. E., Coombs, W. T. (2017). Crises and Crisis Management: Integration, Interpretation, and Research Development. Journal of Management, 43 (6), 1661–1692. doi: https://doi.org/10.1177/0149206316680030
10. Zhang, H., Duan, H., Zuo, J., Song, M., Zhang, Y., Yang, B., Niu, Y. (2017). Characterization of post-disaster environmental management for Hazardous Materials Incidents: Lessons learnt from the Tianjin warehouse explosion, China. Journal of Environmental Management, 199, 21–30. doi: https://doi.org/10.1016/j.jenvman.2017.05.021
11. Nourian, R., Mousavi, S. M., Raissi, S. (2019). A fuzzy expert system for mitigation of risks and effective control of gas pressure reduction stations with a real application. Journal of Loss Prevention in the Process Industries, 59, 77–90. doi: https://doi.org/10.1016/j.jlp.2019.03.003
12. Chernukha, A., Teslenko, A., Kovalov, P., Bezuglov, O. (2020). Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.70
13. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et. al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
14. Kovaliova, O., Pivovarov, O., Kalyna, V., Tchoursinov, Y., Kunitsia, E., Chernukha, A. et. al. (2020). Implementation of the plasmochemical activation of technological solutions in the process of ecologization of malt production. Eastern-European Journal of Enterprise Technologies, 5 (10 (107)), 26–35. doi: https://doi.org/10.15587/1729-4061.2020.215160
15. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et. al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
16. Sytnik, N., Kunitsia, E., Mazaeva, V., Chernukha, A., Kovalov, P., Grigorenko, N. et. al. (2020). Rational parameters of waxes obtaining from oil winterization waste. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 29–35. doi: https://doi.org/10.15587/1729-4061.2020.219602
17. Teslenko, A., Chernukha, A., Bezuglov, O., Bogatov, O., Kunitsa, E., Kalyna, V. et. al. (2019). Construction of an algorithm for building regions of questionable decisions for devices containing gases in a linear multidimensional space of hazardous factors. Eastern-European Journal of Enterprise Technologies, 5 (10 (101)), 42–49. doi: https://doi.org/10.15587/1729-4061.2019.181668
18. Chernukha, A., Chernukha, A., Ostapov, K., Kurska, T. (2021). Investigation of the Processes of Formation of a Fire Retardant Coating. Materials Science Forum, 1038, 480–485. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.480
19. Dahia, A., Merrouche, D., Merouani, D. R., Rezoug, T., Aguedal, H. (2018). Numerical Study of Long-Term Radioactivity Impact on Foodstuff for Accidental Release Using Atmospheric Dispersion Model. Arabian Journal for Science and Engineering, 44 (6), 5233–5244. doi: https://doi.org/10.1007/s13369-018-3518-2
20. Chernukha, A., Chernukha, A., Kovalov, P., Savchenko, A. (2021). Thermodynamic Study of Fire-Protective Material. Materials Science Forum, 1038, 486–491. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.486
21. Leelőssy, Á., Molnár, F., Izsák, F., Havasi, Á., Lagzi, I., Mészáros, R. (2014). Dispersion modeling of air pollutants in the atmosphere: a review. Central European Journal ofGeosciences, 6 (3), 257–278. doi: https://doi.org/10.2478/s13533-012-0188-6
22. Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment. Safety Reports Series No. 19 (2001). International Atomic Energy Agency. Vienna. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1103_scr.pdf
23. Hoinaski, L., Franco, D., de Melo Lisboa, H. (2016). Comparison of plume lateral dispersion coefficients schemes: Effect of averaging time. Atmospheric Pollution Research, 7 (1), 134–141. doi: https://doi.org/10.1016/j.apr.2015.08.004
24. Swain, C. (2009). WISER and REMM: Resources for Disaster Response. Journal of Electronic Resources in Medical Libraries, 6 (3), 253–259. doi: https://doi.org/10.1080/15424060903167393
25. Polorecka, M., Kubas, J., Danihelka, P., Petrlova, K., Repkova Stofkova, K., Buganova, K. (2021). Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management. Sustainability, 13 (1), 438. doi: https://doi.org/10.3390/su13010438
26. Brandt, J., Christensen, J. H., Frohn, L. M. (2002). Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model. Atmospheric Chemistry and Physics, 2 (5), 397–417. doi: https://doi.org/10.5194/acp-2-397-2002
27. Yan, X., Zhou, Y., Diao, H., Gu, H., Li, Y. (2020). Development of mathematical model for aerosol deposition under jet condition. Annals of Nuclear Energy, 142, 107394. doi: https://doi.org/10.1016/j.anucene.2020.107394
28. Kustov, M., Melnychenko, A., Taraduda, D., Korogodska, A. (2021). Research of the Chlorine Sorption Processes when its Deposition by Water Aerosol. Materials Science Forum, 1038, 361–373. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.361
29. Loosmore, G. A., Cederwall, R. T. (2004). Precipitation scavenging of atmospheric aerosols for emergency response applications: testing an updated model with new real-time data. Atmospheric Environment, 38 (7), 993–1003. doi: https://doi.org/10.1016/j.atmosenv.2003.10.055
30. Elperin, T., Fominykh, A., Krasovitov, B., Vikhansky, A. (2011). Effect of rain scavenging on altitudinal distribution of soluble gaseous pollutants in the atmosphere. Atmospheric Environment, 45 (14), 2427–2433. doi: https://doi.org/10.1016/j.atmosenv.2011.02.008
31. Wei, L. (2011). Research on Countermeasures and Methods of Disposing Incidents of Hazardous Chemicals Reacting with Water. Procedia Engineering, 26, 2278–2286. doi: https://doi.org/10.1016/j.proeng.2011.11.2435
32. Kustov, M. (2016). The study of formation and acid precipitation dynamics as a result of big natural and man-made fires. Eastern-European Journal of Enterprise Technologies, 1 (10 (79)), 11–17. doi: https://doi.org/10.15587/1729-4061.2016.59685
33. Shiraiwa, M., Pfrang, C., Koop, T., Pöschl, U. (2012). Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmospheric Chemistry and Physics, 12 (5), 2777–2794. doi: https://doi.org/10.5194/acp-12-2777-2012
34. Tsuruta, T., Nagayama, G. (2004). Molecular Dynamics Studies on the Condensation Coefficient of Water. The Journal of Physical Chemistry B, 108 (5), 1736–1743. doi: https://doi.org/10.1021/jp035885q
35. Julin, J., Shiraiwa, M., Miles, R. E. H., Reid, J. P., Pöschl, U., Riipinen, I. (2013). Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models. The Journal of Physical Chemistry A, 117 (2), 410–420. doi: https://doi.org/10.1021/jp310594e
36. Zhang, R., Hoflinger, F., Reindl, L. (2013). Inertial Sensor Based Indoor Localization and Monitoring System for Emergency Responders. IEEE Sensors Journal, 13 (2), 838–848. doi: https://doi.org/10.1109/jsen.2012.2227593
37. Torres, O., Bhartia, P., Herman, J., Sinyuk, A., Ginoux, P., Holben, B. (2002). A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. Journal of the Atmospheric Sciences, 59 (3), 398–413. doi: https://doi.org/10.1175/1520-0469(2002)059<0398:altroa>2.0.co;2
38. Levy, R. C., Remer, L. A., Dubovik, O. (2007). Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. Journal of Geophysical Research: Atmospheres, 112 (D13). doi: https://doi.org/10.1029/2006jd007815
39. Chu, D. A., Kaufman, Y. J., Zibordi, G., Chern, J. D., Mao, J., Li, C., Holben, B. N. (2003). Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Atmospheres, 108 (D21). doi: https://doi.org/10.1029/2002jd003179
40. Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D. et. al. (2002). The MODIS fire products. Remote Sensing of Environment, 83 (1-2), 244–262. doi: https://doi.org/10.1016/s0034-4257(02)00076-7
41. Van Zadelhoff, G.-J., Stoffelen, A., Vachon, P. W., Wolfe, J., Horstmann, J., Belmonte Rivas, M. (2014). Retrieving hurricane wind speeds using cross-polarization C-band measurements. Atmospheric Measurement Techniques, 7 (2), 437–449. doi: https://doi.org/10.5194/amt-7-437-2014
42. Sweet, W. V., Kopp, R. E., Weaver, C. P. et. al. (2017). Global and Regional Sea Level Rise Scenarios for the United States. NOAA Technical Report NOS CO-OPS 083. Maryland. Available at: https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scenarios_for_the_US_final.pdf
43. Cunningham, J. D., Ricker, F. L., Nelson, C. S. (2003). The National Polar-orbiting Operational Environmental Satellite System future US operational Earth observation system. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477). doi: https://doi.org/10.1109/igarss.2003.1293773
44. Diner, D. J., Beckert, J. C., Bothwell, G. W., Rodriguez, J. I. (2002). Performance of the MISR instrument during its first 20 months in Earth orbit. IEEE Transactions on Geoscience and Remote Sensing, 40 (7), 1449–1466. doi: https://doi.org/10.1109/tgrs.2002.801584
46. Paneque-Gálvez, J., McCall, M., Napoletano, B., Wich, S., Koh, L. (2014). Small Drones for Community-Based Forest Monitoring: An Assessment of Their Feasibility and Potential in Tropical Areas. Forests, 5 (6), 1481–1507. doi: https://doi.org/10.3390/f5061481

2022-02-25

## How to Cite

Melnichenko, A., Kustov, M., Basmanov, O., Tarasenko, O., Bogatov, O., Kravtsov, M., Petrova, O., Pidpala, T., Karatieieva, O., & Shevchuk, N. (2022). Devising a procedure to forecast the level of chemical damage to the atmosphere during active deposition of dangerous gases. Eastern-European Journal of Enterprise Technologies, 1(10(115), 31–40. https://doi.org/10.15587/1729-4061.2022.251675

Ecology