Development of pipelined polynomial multiplier modulo irreducible polynomials for cryptosystems
DOI:
https://doi.org/10.15587/1729-4061.2022.251913Keywords:
cryptography, polynomial system of residue classes, pipeline multiplier modulo, FPGAAbstract
In this paper, we consider a schematic solution of the pipeline multiplier modulo, where multiplication begins with the analysis of the lowest order of the polynomial multiplier, which can serve as an operating unit for high-speed encryption and decryption of data by hardware implementation of cryptosystems based on a non-positional polynomial notation. The functional diagram of the pipeline and the structure of its logical blocks, as well as an example of performing the operation of multiplying polynomials modulo, are given. The correct functioning of the developed circuit was checked by modeling in the Vivado Design Suite computer-aided design for the implementation of the multiplication device on the development/evaluation kit Artix-7 based on the Spartan 6 field-programmable gate array series by Xilinx. The effectiveness of the proposed hardware pipeline multiplier in modulo is confirmed by the Verilog Testbench timing diagram implemented for the evaluation kit Artix-7 field-programmable gate array. In addition, the developed pipelined modulo multiplier takes no more than 0.02 % of the resources of the used field-programmable gate array for a given length of input data. Compared to the matrix multiplication method, a pipelined modulo multiplier can handle a large data stream without waiting for the result of the previous multiplication step. The modulo pipelined multiplier depth depends on the bit width of the input data. The developed pipeline device can be used in digital computing devices operating in a polynomial system of residue classes, as well as for high-speed data encryption in blocks of cipher processors operating on the basis of a non-positional polynomial number system.
Supporting Agency
- This research was funded by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan grant OR11465439.
References
- Li, L., Li, S. (2016). High-Performance Pipelined Architecture of Elliptic Curve Scalar Multiplication Over GF(2m). IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24 (4), 1223–1232. doi: https://doi.org/10.1109/tvlsi.2015.2453360
- Mohaghegh, S., Yemiscioglu, G., Muhtaroglu, A. (2020). Low-Power and Area-Efficient Finite Field Multiplier Architecture Based on Irreducible All-One Polynomials. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). doi: https://doi.org/10.1109/iscas45731.2020.9181179
- Nejatollahi, H., Gupta, S., Imani, M., Rosing, T. S., Cammarota, R., Dutt, N. (2020). CryptoPIM: In-memory Acceleration for Lattice-based Cryptographic Hardware. 2020 57th ACM/IEEE Design Automation Conference (DAC). doi: https://doi.org/10.1109/dac18072.2020.9218730
- Singh, J., Kumar, S. (2021). A new class of irreducible polynomials. Communications in Algebra, 49 (6), 2722–2727. doi: https://doi.org/10.1080/00927872.2021.1881789
- Devi, S., Mahajan, R., Bagai, D. (2021). A low complexity bit parallel polynomial basis systolic multiplier for general irreducible polynomials and trinomials. Microelectronics Journal, 115, 105163. doi: https://doi.org/10.1016/j.mejo.2021.105163
- Svoboda, A. Valach, M. (1955). Operatorove obvody. Stroje Na Zpracovani Informaci, 3, 247–296.
- Akushskiy, I. Ya., Yuditskiy, D. I. (1968). Mashinnaya arifmetika v ostatochnykh klassakh. Moscow: Sovetskoe radio, 440.
- Sinha Roy, S., Basso, A. (2020). High-speed Instruction-set Coprocessor for Lattice-based Key Encapsulation Mechanism: Saber in Hardware. IACR Transactions on Cryptographic Hardware and Embedded Systems, 443–466. doi: https://doi.org/10.46586/tches.v2020.i4.443-466
- Cenk, M., Özbudak, F. (2011). Multiplication of polynomials modulo xn. Theoretical Computer Science, 412 (29) 3451–3462. doi: https://doi.org/10.1016/j.tcs.2011.02.031
- Biyashev, R. G., Nyssanbayeva, S. E. (2012). Algorithm for creating a digital signature with error detection and correction. Cybernetics and Systems Analysis, 48 (4), 489–497. doi: https://doi.org/10.1007/s10559-012-9428-5
- Nysanbaev, R. K. (1999). Kriptograficheskiy metod na osnove polinomial'nykh bazisov. Vestnik Ministerstva nauki i vysshego obrazovaniya i Natsional'noy akademii nauk Respubliki Kazakhstan, 5, 63–65.
- Yenlik, B., Оlga, U., Rustem, B., Saule, N. (2020). Development of an automated system model of information protection in the cross-border exchange. Cogent Engineering, 7 (1), 1724597. doi: https://doi.org/10.1080/23311916.2020.1724597
- Kapalova, N., Khompysh, A., Arici, M., Algazy, K. (2020). A block encryption algorithm based on exponentiation transform. Cogent Engineering, 7 (1), 1788292. doi: https://doi.org/10.1080/23311916.2020.1788292
- Kalimoldayev, M., Tynymbayev, S., Magzom, M., Ibraimov, M., Khokhlov, S., Abisheva, A., Sydorenko, V. (2019). Polynomials multiplier under irreducible polynomial module for high-performance cryptographic hardware tools. CEUR Workshop Proceedings, 2393, 729–737. Available at: http://ceur-ws.org/Vol-2393/paper_363.pdf
- Kalimoldayev, M., Tynymbayev, S., Gnatyuk, S., Khokhlov, S. et. al. (2019). Matrix multiplier of polynomials modulo analysis starting with the lower order digits of the multiplier. NEWS of National Academy of Sciences of the Republic of Kazakhstan, 4 (436), 181–187. doi: https://doi.org/10.32014/2019.2518-170x.113
- Jankowski, K., Laurent, P., O’Mahony, A. (2012). Intel Polynomial Multiplication Instruction and its Usage for Elliptic Curve Cryptography. White Paper, 17. Available at: https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/polynomial-multiplication-instructions-paper.pdf
- Xilinx. Available at: https://www.xilinx.com/products/boards-and-kits.html
- IEEE Standard 1364-2005. IEEE Standard for Verilog Hardware Description Language. doi: https://doi.org/10.1109/ieeestd.2006.99495
- Kalimoldayev M., Tynymbayev S., Ibraimov M., Magzom M., Kozhagulov Y., Namazbayev T. (2020). Pipeline multiplier of polynomials modulo with analysis of high-order bits of the multiplier. Bulletin of National Academy of Sciences of the Republic of Kazakhstan, 4 (386), 13–20. doi: https://doi.org/10.32014/2020.2518-1467.98
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Sakhybay Tynymbayev, Margulan Ibraimov, Timur Namazbayev, Sergiy Gnatyuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.