Optimization algorithm based on the Euler method for solving fuzzy nonlinear equations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.252014

Keywords:

algorithms, approach, fuzzy, global, Euler method, intelligent techniques, nonlinear equations, numerical optimization, swarms

Abstract

In a variety of engineering, scientific challenges, mathematics, chemistry, physics, biology, machine learning, deep learning, regression classification, computer science, programming, artificial intelligence, in the military, medical and engineering industries, robotics and smart cars, fuzzy nonlinear equations play a critical role. As a result, in this paper, an Optimization Algorithm based on the Euler Method approach for solving fuzzy nonlinear equations is proposed. In mathematics and computer science, the Euler approach (sometimes called the forward Euler method) is a first-order numerical strategy for solving ordinary differential equations (ODEs) with a specified initial value. The local error is proportional to the square of the step size, while the general error is proportional to the step size, according to the Euler technique. The Euler method is frequently used to create more complicated algorithms. The Optimization Algorithm Based on the Euler Method (OBE) uses the logic of slope differences, which is computed by the Euler approach for global optimizations as a search mechanism for promising logic. Furthermore, the mechanism of the proposed work takes advantage of two active phases: exploration and exploitation to find the most important promising areas within the distinct space and the best solutions globally based on a positive movement towards it. In order to avoid the solution of local optimal and increase the rate of convergence, we use the ESQ mechanism. The optimization algorithm based on the Euler method (OBE) is very efficient in solving fuzzy nonlinear equations and approaches the global minimum and avoids the local minimum. In comparison with the GWO algorithm, we notice a clear superiority of the OBE algorithm in reaching the solution with higher accuracy. We note from the numerical results that the new algorithm is 50 % superior to the GWO algorithm in Example 1, 51 % in Example 2 and 55 % in Example 3.

Supporting Agency

  • The authors are very grateful to the University of Mosul./.Collage of Education for Pure Science for their provided facilities, which helped to improve the quality of this work.

Author Biographies

Kais I. Ibraheem, University of Mosul

Assistant Professor, Dean of College

Department of Computer Science

College of Education for Pure Science

Hisham M. Khudhur, University of Mosul

Lecturer

Department of Mathematics

College of Computer Science and Mathematics

References

  1. Chang, S. S. L., Zadeh, L. A. (1972). On Fuzzy Mapping and Control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-2 (1), 30–34. doi: https://doi.org/10.1109/tsmc.1972.5408553
  2. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-III. Information Sciences, 9 (1), 43–80. doi: https://doi.org/10.1016/0020-0255(75)90017-1
  3. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. doi: https://doi.org/10.1016/s0019-9958(65)90241-x
  4. Mizumoto, M., Tanaka, K. (1976). The four operations of arithmetic on fuzzy numbers. Systems Computers Controls, 7 (5), 73–81. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-0037807009&origin=inward&txGid=0c07e4e7651f74da4a7b98c984340897
  5. Dubois, D., Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9 (6), 613–626. doi: https://doi.org/10.1080/00207727808941724
  6. Abbasbandy, S., Asady, B. (2004). Newton’s method for solving fuzzy nonlinear equations. Applied Mathematics and Computation, 159 (2), 349–356. doi: https://doi.org/10.1016/j.amc.2003.10.048
  7. Buckley, J. J., Qu, Y. (1991). Solving fuzzy equations: A new solution concept. Fuzzy Sets and Systems, 39 (3), 291–301. doi: https://doi.org/10.1016/0165-0114(91)90099-c
  8. Buckley, J. J., Qu, Y. (1990). Solving linear and quadratic fuzzy equations. Fuzzy Sets and Systems, 38 (1), 43–59. doi: https://doi.org/10.1016/0165-0114(90)90099-r
  9. Muzzioli, S., Reynaerts, H. (2006). Fuzzy linear systems of the form A1x + b1 = A2x + b2. Fuzzy Sets and Systems, 157 (7), 939–951. doi: https://doi.org/10.1016/j.fss.2005.09.005
  10. Atkinson, K. E. (1989). An introduction to numerical analysis. John Willey & Sons.
  11. Abbasbandy, S., Jafarian, A. (2006). Steepest descent method for solving fuzzy nonlinear equations. Applied Mathematics and Computation, 174 (1), 669–675. doi: https://doi.org/10.1016/j.amc.2005.04.092
  12. Shokri, J. (2008). Numerical method for solving fuzzy nonlinear equations. Applied Mathematical Sciences, 2 (24), 1191–1203. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.524.4419&rep=rep1&type=pdf
  13. Garg, A., Singh, S. R. (2010). Solving Fuzzy Nonlinear Equations by a General Iterative Method. Journal of Uncertain Systems, 4 (3), 206–215. Available at: http://www.worldacademicunion.com/journal/jus/jusVol04No3paper06.pdf
  14. Ramli, A., Abdullah, M. L., Mamat, M. (2010). Broyden’s method for solving fuzzy nonlinear equations. Advances in Fuzzy Systems, 2010, 1–6. doi: https://doi.org/10.1155/2010/763270
  15. Khorasani, S. M., Aghcheghloo, M. H. D. (2011). Solving fuzzy nonlinear equation with secand method. International Journal of Algebra, 5 (6), 295–299. Available at: http://www.m-hikari.com/ija/ija-2011/ija-5-8-2011/lotfiIJA5-8-2011.pdf
  16. Senthilkumar, L. S., Ganesan, K. (2016). Bisection method for fuzzy nonlinear equations. Global Journal of Pure and Applied Mathematics, 12 (1), 271–276. Available at: https://www.researchgate.net/publication/298072410_Bisection_method_for_fuzzy_nonlinear_equations
  17. Ahmad, M. Z., Jamaluddin, N. A., Sakib, E., Wan Daud, W. S., Abdul Rahman, N. A. (2016). Fuzzy false position method for solving fuzzy nonlinear equations. ARPN Journal of Engineering and Applied Sciences, 11 (16), 9737–9745. Available at: https://www.researchgate.net/profile/Norazrizal-Aswad-Abdul-Rahman/publication/309121938_Fuzzy_false_position_method_for_solving_fuzzy_nonlinear_equations/links/5b50fdc545851507a7b1f1b2/Fuzzy-false-position-method-for-solving-fuzzy-nonlinear-equations.pdf
  18. Ali, M. Y., Chowdhury, K. R., Sultana, A., Khan, A. (2016). Solution of Fuzzy Non-linear Equations over Triangular Fuzzy Number using Modified Secant Algorithm. Annals of Pure and Applied Mathematics, 12 (1), 41–47. Available at: http://www.researchmathsci.org/apamart/apam-v12n1-6.pdf
  19. Sulaiman, I. M., Waziri, M. Y., Olowo, E. S., Talat, A. N. (2018). Solving Fuzzy Nonlinear Equations with a New Class of Conjugate Gradient Method. Malaysian Journal of Computing and Applied Mathematics, 1 (1), 11–19. Available at: https://www.researchgate.net/publication/326960708_Solving_Fuzzy_Nonlinear_Equations_with_a_New_Class_of_Conjugate_Gradient_Method
  20. Mohammed Sulaiman, I., Mamat, M., Yusuf Waziri, M., Shamsidah Amzeh, N. (2018). Barzilai-Borwein gradient method for solving fuzzy nonlinear equations. International Journal of Engineering & Technology, 7 (3.28), 80. doi: https://doi.org/10.14419/ijet.v7i3.28.20972
  21. Sulaiman, I. M., Mamat, M., Waziri, M. Y., Umar, A. O. (2018). Numerical Method for Solution of Fuzzy Nonlinear Equations. Journal of Advanced Research in Modelling and Simulations, 1, 13–18. Available at: https://www.akademiabaru.com/doc/ARMASV1_N1_P13_18.pdf
  22. Omesa, A. U., Mamat, M., Sulaiman, I. M., Waziri, M. Y., Mohamed, M. A. (2018). Solving Fuzzy Nonlinear Equations Via Stirling’s-Like Method. International Journal of Engineering & Technology, 7 (3.28), 335–338. Available at: https://www.sciencepubco.com/index.php/ijet/article/view/27380
  23. Usman Moyi, A. (2019). Chord Newton’s Method for Solving Fuzzy Nonlinear Equations. International Journal of Advanced Mathematical Sciences, 7 (1), 16. doi: https://doi.org/10.14419/ijams.v7i1.30098
  24. Mamat, M., Sulaiman, I. M., Ghazali, P. L. (2020). An accelerated scheme for solving parameterized fuzzy nonlinear equations. Int. J. Adv. Sci. Technol., 29 (5), 248–255.
  25. Omesa, U. A., Mamat, M., Sulaiman, I. M., Sukono, S. (2020). On quasi newton method for solving fuzzy nonlinear equations. International Journal of Quantitative Research and Modeling, 1 (1), 1–10. doi: https://doi.org/10.46336/ijqrm.v1i1.1
  26. Jafari, R., Yu, W., Razvarz, S., Gegov, A. (2021). Numerical methods for solving fuzzy equations: A survey. Fuzzy Sets and Systems, 404, 1–22. doi: https://doi.org/10.1016/j.fss.2019.11.003
  27. Rasheed, M., Shihab, S., Rashid, A., Rashid, T., Hamed, S. H. A., AL-Kinani, M. H. J. (2021). A Special Iterative Algorithm for Solving Nonlinear Equations. Journal of Al-Qadisiyah for Computer Science and Mathematics, 13 (2), 105–113. Available at: https://qu.edu.iq/journalcm/index.php/journalcm/article/view/804/608
  28. Omesa, A. U., Sulaiman, I. M., Mamat, M., Waziri, M. Y., Shadi, A., Zaini, M. A. et. al. (2021). Derivative Free Levenberg-Marquardt Method for Solving Fuzzy Nonlinear Equation. IOP Conference Series: Materials Science and Engineering, 1115 (1), 012002. doi: https://doi.org/10.1088/1757-899x/1115/1/012002
  29. Ibrahim, S. M., Mamat, M., Ghazali, P. L. (2020). Shamanskii Method for Solving Parameterized Fuzzy Nonlinear Equations. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 11 (1), 24–29. doi: https://doi.org/10.11121/ijocta.01.2021.00843
  30. Abed, M. M., Öztürk, U., Khudhur, H. (2022). Spectral CG Algorithm for Solving Fuzzy Non-linear Equations. Iraqi Journal for Computer Science and Mathematics, 3 (1), 1–10. doi: https://doi.org/10.52866/ijcsm.2022.01.01.001
  31. Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079. doi: https://doi.org/10.1016/j.eswa.2021.115079
  32. Mirjalili, S., Mirjalili, S. M., Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. doi: https://doi.org/10.1016/j.advengsoft.2013.12.007
  33. Sadiqbatcha, S., Jafarzadeh, S., Ampatzidis, Y. (2017). Particle swarm optimization for solving a class of type-1 and type-2 fuzzy nonlinear equations. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). doi: https://doi.org/10.1109/fuzz-ieee.2017.8015474
  34. Jafari, R., Razvarz, S., Gegov, A. (2019). Neural Network Approach to Solving Fuzzy Nonlinear Equations using Z-Numbers. IEEE Transactions on Fuzzy Systems, 28 (7), 1230–1241. doi: https://doi.org/10.1109/tfuzz.2019.2940919

Downloads

Published

2022-02-25

How to Cite

Ibraheem, K. I., & Khudhur, H. M. (2022). Optimization algorithm based on the Euler method for solving fuzzy nonlinear equations. Eastern-European Journal of Enterprise Technologies, 1(4 (115), 13–19. https://doi.org/10.15587/1729-4061.2022.252014

Issue

Section

Mathematics and Cybernetics - applied aspects