Developing a statistical model for the active ventilation of a grain layer with high moisture content

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.253038

Keywords:

active ventilation, chamber height, feed speed, intergrain space, specific energy cost

Abstract

The most important stage in the technological operations for grain production is its post-harvest processing. At this stage, the quality of the grain masses is lost because the temperature condition inside bulk grain is almost never checked during temporary storage.

In order to increase the technological efficiency of primary grain processing and storage, an installation has been designed that could preserve the quality of grain at low-capacity enterprises or during temporary storage. As the self-heating of grain during storage is a serious issue, the installation would also help solve the problem related to the temporary lack of storage facilities. Thus, using active grain ventilation makes it possible to improve the resistance of grain masses to storage. The available body of research into energy-saving drying processes, active ventilation, and purification of grain from light impurities mainly resolve highly specialized technological tasks. Of interest are those studies that aim to design and implement the rational equipment structure for the active ventilation and cleaning of grain from light impurities, which make it possible to practically execute non-stationary modes. This paper considers the efficiency of active ventilation and the reduction of energy costs depending on the installation's structural parameters; specifically, the height of the chamber and the speed of supply of warm air are selected. The height of the working chamber of 1 m and the air velocity of 1.1–1.4 m/s have been experimentally proven and theoretically substantiated.

Author Biographies

Ardak Askarov, Almaty Technological University

Doctoral Student

Department of Mechanization and Automation of Food Production

Dinara Tlevlessova, Almaty Technological University

PhD, Аssociate Рrofessor

Department of Food Technology

Alexander Ostrikov, Federal State Budget Educational Institution of Higher Education «Voronezh State University of Engineering Technologies» (FSBEI HE «VSUET»)

Doctor of Technical Sciences, Professor

Department of Technologies of Fats, Processes and Apparatus for Chemical and Food Production

Yermek Shambulov, Almaty Technological University

PhD, Aassociate Professor

Department of Machines and Devices of Production Processes

Ainura Kairbayeva, Almaty Technological University

PhD, Associate Professor

Department of Mechanization and Automation of Production Processes

References

  1. Mirovoy rynok zerna i prodovol'stvennoe obespechenie naseleniya zemli. Available at: http://www.vspmr.org/information/expert-opinion/mirovoy-rinok-zerna-i-prodovoljstvennoe-obespechenie-naseleniya-zemli.html
  2. Hemis, M., Watson, D. G., Gariépy, Y., Lyew, D., Raghavan, V. (2019). Modelling study of dielectric properties of seed to improve mathematical modelling for microwave-assisted hot-air drying. Journal of Microwave Power and Electromagnetic Energy, 53 (2), 94–114. doi: https://doi.org/10.1080/08327823.2019.1607491
  3. Vasil'ev, A. N., Budnikov, D. A., Grachyova, N. N., Severinov, O. V. (2016). Sovershenstvovanie tekhnologii sushki zerna v plotnom sloe s ispol'zovaniem elektrotekhnologiy, ASU i modelirovaniya protsessa. Moscow: FGBNU FNAK VIM, 176. Available at: http://xn--80aqa2d.xn--p1ai/files/690018a8-7ab4-413d-9f82-b5c6dbf497d9.pdf
  4. Vasiliev, A. N., Ospanov, A. B., Budnikov, D. K., Karmanov, D. K., Salginbayev, D. B., Vasilyev, A. A. (2016). Controlling reactions of biological objects of agricultural production with the use of electrotechnology. International Journal of Pharmacy & Technology, 8 (4), 26855–26869.
  5. Han, F., Zuo, C., Wu, W., Li, J., Liu, Z. (2012). Model Predictive Control of the Grain Drying Process. Mathematical Problems in Engineering, 2012, 1–12. doi: https://doi.org/10.1155/2012/584376
  6. Vasilyev, A. A., Tsimba, A., Vasilyev, A., Ershova, I., Belov, A. (2019). Mathematical and computer models of the change of the parameters of the grain layer during the movement of the grain through the microwave and convection zone. Amazonia Investiga, 8 (19), 138–148. Available at: https://amazoniainvestiga.info/index.php/amazonia/article/view/213
  7. Morozov, M. S., Morozov, C. M., Reut, V. A. (2016). Mikrovolnovaya ustanovka dlya sushki zerna. Molodoy ucheniy, 30 (134), 83–86. Available at: https://moluch.ru/archive/134/37631/
  8. Afonkina, V. A., Zakhakhatnov, V. G., Mayerov, V. I., Popov, V. M. (2016). On the question of process control combined grain drying. Mordovia University Bulletin, 26 (1), 32–39. doi: https://doi.org/10.15507/0236-2910.026.201601.032-039
  9. Sorochinskiy, V. F., Dogadin, A. L. (2018). Kontrol' protsessa sushki zerna po parametram otrabotavshego agenta sushki. Hleboprodukty, 3, 49–53. Available at: https://vniiz.org/science/publication/article-307
  10. Podgorodetskiy, O. A. (2020). K voprosu snizheniya energozatrat v tekhnologii dvuhstadiynoy sushki zerna. Hranenie i pererabotka zerna. Available at: https://agroserver.ru/articles/1147.htm
  11. Golubkovich, A. V., Lukin, I. D. (2018). High Humidity Grain Periodic Drying. Agricultural Machinery and Technologies, 12 (2), 9–13. doi: https://doi.org/10.22314/2073-7599-2018-12-2-9-13
  12. Golubkovich, A. V., Pavlov, S. A., Lukin, I. D. (2016). Study of pulse drying of grain in the S-30 dryer. Tractors and Agricultural Machinery, 83 (6), 27–30.
  13. Vasiliev, A. N., Severin, O. V. (2015). Structural scheme of model of drying grain in sectional setups of active aeration. International Research Journal, 8 (39), 22–25. Available at: https://research-journal.org/agriculture/strukturnaya-sxema-modeli-sushki-zerna-v-sekcionnyx-ustanovkax-aktivnogo-ventilirovaniya/
  14. Hansen, R. C., Berry, M. A., Keener, H. M., Gustafson, R. J. (1996). Current Grain Drying Practices in Ohio. Applied Engineering in Agriculture, 12 (1), 65–69. doi: https://doi.org/10.13031/2013.25440
  15. Bastron, T. N., Chirukhina, N. M. (2012). Energy saving modes of drying the oats by means of forced aeration. Vestnik KrasGAU, 4, 192–197. Available at: https://cyberleninka.ru/article/n/energosberegayuschie-rezhimy-sushki-ovsa-aktivnym-ventilirovaniem
  16. Kretov, I. T., Kravchenko, V. M., Drannikov, A. V. (2003). Sravnitel'naya otsenka protsessa sushki sveklovichnogo zhoma topochnymi gazami i peregretym parom. Izvestiya vuzov. Pischevaya tekhnologiya, 1, 44–46. Available at: https://cyberleninka.ru/article/n/sravnitelnaya-otsenka-protsessa-sushki-sveklovichnogo-zhoma-topochnymi-gazami-i-peregretym-parom
  17. Sorochinskiy, V. F. (2015). Povyshenie effektivnosti konvektivnoy sushki zerna. Saarbrücken: LAP LAMBERT, 116. Available at: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-659-74511-9/повышение-эффективности-конвективной-сушки-зерна

Downloads

Published

2022-02-27

How to Cite

Askarov, A., Tlevlessova, D., Ostrikov, A., Shambulov, Y., & Kairbayeva, A. (2022). Developing a statistical model for the active ventilation of a grain layer with high moisture content. Eastern-European Journal of Enterprise Technologies, 1(11(115), 6–14. https://doi.org/10.15587/1729-4061.2022.253038

Issue

Section

Technology and Equipment of Food Production