Determining features of the deformed state of reinforced concrete beams of road bridges when strengthening the span structures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.254315

Keywords:

repair of bridges, concrete road beams, reinforcement slab, deformation, concrete structure

Abstract

The technology of repairing reinforced concrete bridges typically involves closing traffic on one half of the structure and performing work on it when it is possible to move vehicles on the second part of this structure. The main process of interest to practitioners in terms of hardening concrete, which occurs in the beams of a span structure during the passage of a temporary moving load, is deformation. By the time the cement of freshly laid concrete of the overhead reinforcement slab is hardened, it is necessary to create the necessary conditions for this (temperature, humidity, immobility over time, etc.). Before concrete acquires strength, movements arising in the span structure cause the destruction of cement stone at the formation stage. It is necessary to investigate the presence of deformations, as well as their impact on the impossibility of forming a homogeneous structure of concrete and its adhesion to reinforcing elements that combine the existing slab with the new one.

This study has established deformations induced by a temporary load from 1.61 to 5.83 mm, which have a negative impact on the process of solidification of concrete in the reinforcement slab for a span structure during the repair of a motorway bridge. The three-dimensional models were calculated by simulating a bridge of the M-04 highway. The results underlie the conclusions that the technology of repair work does not take into consideration the required conditions for high-quality concrete strength acquisition in an additional slab.

The study results established that operations on concreting an additional overhead reinforcement slab in the presence of vibrational effects exerted by the temporary load on the span structure cannot be performed because of the destruction of concrete at the hardening stage.

Given the above issue, several ways to address it have been devised and analyzed; the best of them is recommended

Author Biographies

Serhii Kliuchnyk, Ukrainian State University of Science and Technologies

PhD, Associate Professor

Department of Transport Infrastructure

Dmytro Spivak, Ukrainian State University of Science and Technologies

Postgraduate Student

Department of Transport Infrastructure

Igor Goryushkin, Limited Liability Society Budivelna Kompaniya Adamant

Chief Engineer

References

  1. Bodnar, L., Koval, P., Stepanov, S., Panibratets, L. (2019). Operational state of bridges of Ukraine. Avtoshliakhovyk Ukrayiny, 2 (258), 57–68. doi: https://doi.org/10.33868/0365-8392-2019-2-258-57-68
  2. Shen, L., Soliman, M., Ahmed, S. A. (2021). A probabilistic framework for life-cycle cost analysis of bridge decks constructed with different reinforcement alternatives. Engineering Structures, 245, 112879. doi: https://doi.org/10.1016/j.engstruct.2021.112879
  3. Kazaryan, V. Yu., Sakharova, I. D. (2018). Modern methods of reconstruction of bridge structures. Mosty ta tuneli: teoriya, doslidzhennia, praktyka, 14, 6–14. Available at: http://bttrp.diit.edu.ua/article/view/152845/152034
  4. Borshchov, V. I., Soldatov, K. I., Tarasenko, V. P., Popovych, M. M., Solomka, V. I. (2003). Pravyla vyznachennia vantazhopidiomnosti balkovykh zalizobetonnykh prohonovykh budov zaliznychnykh mostiv. Dnipro, 404.
  5. Baloch, W. L., Siad, H., Lachemi, M., Sahmaran, M. (2021). A review on the durability of concrete-to-concrete bond in recent rehabilitated structures. Journal of Building Engineering, 44, 103315. doi: https://doi.org/10.1016/j.jobe.2021.103315
  6. Pshinko, O. M., Krasniuk, A. V., Hromova, O. V. (2015). Vybir materialiv dlia remontu ta vidnovlennia betonnykh ta zalizobetonnykh konstruktsiy transportnykh sporud z urakhuvanniam kryteriyu sumisnosti. Dnipropetrovsk, 195. Available at: https://docplayer.net/86071361-Vibir-materialiv-dlya-remontu-ta-vidnovlennya-betonnih-ta-zalizobetonnih-konstrukciy-transportnih-sporud-z-urahuvannyam-kriteriyu-sumisnosti.html
  7. Žiogas, V. A., Juočiūnas, S., Medelienė, V., Žiogas, G. (2012). Concreting and early hardening processes in monolithic reinforced concrete structures / Procesai, vykstantys betonavimo ir pradinio kietėjimo metu gelžbetoninėse monolitinėse konstrukcijose. Engineering Structures and Technologies, 4 (2), 67–75. doi: https://doi.org/10.3846/2029882x.2012.699258
  8. He, Y., Zhang, X., Hooton, R. D., Zhang, X. (2017). Effects of interface roughness and interface adhesion on new-to-old concrete bonding. Construction and Building Materials, 151, 582–590. doi: https://doi.org/10.1016/j.conbuildmat.2017.05.049
  9. Senchenko, I. O. Nabir mitsnosti betonu - stadiyi, hrafik narostannia v zalezhnosti vid temperatury po dobi. Available at: http://stroytechnology.net/schkola-remonty/7998-nabir-miznosti-betony.html
  10. DBN V.1.2-15:2009. Sporudy transportu. Navantazhennia ta vplyvy. Mosty ta truby. Kyiv. Available at: http://kbu.org.ua/assets/app/documents/dbn2/48.1.%20ДБН%20В.1.2-15~2009.%20Споруди%20транспорту.%20Мости%20та%20тр.pdf
  11. Seriya 3.503.1-81. Proletnye stroeniya sbornye zhelezobetonnye dlinoy 12, 15, 18, 21, 24, 33 m iz balok dvutavrovogo secheniya s predvaritel'no napryagaemoy armaturoy dlya mostov i puteprovodov, raspolozhennykh na avtomobil'nykh dorogakh obschego pol'zovaniya, na ulitsakh i dorogakh v gorodakh. Available at: https://www.eruditor.io/file/3335826/
  12. Seriya 3.503.1-81. Proletnye stroeniya sbornye zhelezobetonnye dlinoy 12, 15, 18, 21, 24, 33 m iz balok dvutavrovogo secheniya s predvaritel'no napryagaemoy armaturoy dlya mostov i puteprovodov, raspolozhennykh na avtomobil'nykh dorogakh obschego pol'zovaniya, na ulitsakh i dorogakh v gorodakh. Available at: https://docs.cntd.ru/document/1200006844
  13. DSTU-N B V.2.6-203:2015. Nastanova z vykonannia robit pry vyhotovlenni ta montazhi budivelnykh konstruktsiy. Available at: https://dbn.co.ua/load/normativy/dstu/dstu_n_b_v_2_6_203/5-1-0-1833
  14. Morozova, L. M., Samosvat, V. V. (2012). Analiz vplyvu ruinuvannia poperechnoho obiednannia zalizobetonnykh balok prohonovoi budovy rozriznykh mostiv na rozpodilennia navantazhennia. Donetsk, 165.

Downloads

Published

2022-04-28

How to Cite

Kliuchnyk, S., Spivak, D., & Goryushkin, I. (2022). Determining features of the deformed state of reinforced concrete beams of road bridges when strengthening the span structures . Eastern-European Journal of Enterprise Technologies, 2(7 (116), 22–28. https://doi.org/10.15587/1729-4061.2022.254315

Issue

Section

Applied mechanics