Development of a method for assessing the reliability of fire detection in premises

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.259493

Keywords:

fire detection, empirical distribution function, confidence interval, probability of fire, recurrence

Abstract

The object of this study is the detection of fires in the premises. The problem that was solved is the development of tools to assess the reliability of detection of fires in the premises based on the recurrence of the vector of increases in dangerous parameters of the gas environment. The method includes the sequential implementation of five procedures related to the formation of the vector of current increases in dangerous parameters, determining the recurrence of the current vector and evaluating the empirical distribution function relative to the calculated current recurrence of the state vector. Features and distinctive attributes of the developed method are the use of empirical cumulative distribution function in relation to the current recurrence of the state of hazardous parameters of the gas environment in the premises during fires. This makes it possible to solve the task of developing tools for the numerical determining of the trust limit for the predefined level of significance (reliability) and the likelihood of detecting fires in the premises in real time. The scope and conditions for the practical use of the obtained results are the modern and promising means and fire protection systems of various types of premises in buildings and structures. The proposed method was tested on the example of igniting test materials in the laboratory chamber. It is established that for materials with a high combustion rate (alcohol and cellulose) with a probability of 0.95, there is a sharp decrease in the value of the empirical function assessment to zero values. For timber, the value of this estimate is 0.15, and for textiles, the minimum value of the estimate is 0.31. It is established that the boundaries of the confidence interval with the level of significance covering the obtained estimates are determined by the value of ±0.086. In general, the results of the test indicate the operability of the proposed method for determining the reliability of detection of fires in the premises on the basis of the current degree of recurrence of increases in dangerous parameters of the gas environment

Author Biographies

Volodymyr Sadkovyi, National University of Civil Defence of Ukraine

Doctor of Science in Public Administration, Professor, Rector

Boris Pospelov, Scientific-methodical Center of Educational Institutions in the Sphere of Civil Defence

Doctor of Technical Sciences, Professor

 

Evgenіy Rybka, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Senior Researcher

Research Center

Borys Kreminskyi, State Scientific Institution «Institute of education content modernization»

Doctor of Pedagogical Science, Associate Professor

Department of Work With Gifted Youth

Oleksandr Yashchenko, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Management and Organization of Civil Defence

Yuliia Bezuhla, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Eleonora Darmofal, Kharkiv State Academy of Physical Culture

PhD, Head of Department

Educational Department

Eduard Kochanov, V. N. Karazin Kharkiv National University

PhD, Associate Professor

Department of Environmental Monitoring and Preservation

Svitlana Hryshko, Bogdan Khmelnitsky Melitopol State Pedagogical University

PhD

Department of Physical Geography and Geology

Iryna Kozynska, Pavlo Tychyna Uman State Pedagogical University

PhD

Department of Geography and Methods of its Education

References

  1. Brushlinsky, N. N., Ahrens, M., Sokolov, S. V., Wagner, P. (2019). World Fire Statistics. Report No. 24. Berlin: Center of Fire Statistics of CTIF, 65.
  2. Mygalenko, K., Nuyanzin, V., Zemlianskyi, A., Dominik, A. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: http://doi.org/10.15587/1729-4061.2018.121727
  3. Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. doi: http://doi.org/10.5604/01.3001.0012.2830
  4. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4), 186–195. doi: http://doi.org/10.6001/energetika.v64i4.3893
  5. Semko, A., Beskrovnaya, M., Vinogradov, S., Hritsina, I., Yagudina, N. (2017). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 3, 655–664.
  6. Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: http://doi.org/10.1088/1757-899x/708/1/012065
  7. Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A. et. al. (2018). Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 1 (91), 27–33. doi: http://doi.org/10.5604/01.3001.0012.9654
  8. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: http://doi.org/10.1051/e3sconf/20186000003
  9. Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. doi: http://doi.org/10.15587/978-617-7319-43-5
  10. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77.
  11. Kustov, M., Kalugin, V., Tutunik, V., Tarakhno, O. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: http://doi.org/10.32434/0321-4095-2019-122-1-92-99
  12. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation. 22 (3), 1171–1176.
  13. Reproduced with permission from Fire Loss in the United States During 2019 (2020). National Fire Protection Association, 11.
  14. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finely­dispersed water. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 38–43. doi: http://doi.org/10.15587/1729-4061.2018.127865
  15. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: http://doi.org/10.1260/1750-9548.9.1.9
  16. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et. al. (2019). Physical Features of Pollutants Spread in the Air During the Emergency at NPPs. Nuclear and Radiation Safety, 4 (84), 88–98. doi: http://doi.org/10.32918/nrs.2019.4(84).11
  17. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: http://doi.org/10.15587/1729-4061.2018.122419
  18. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: http://doi.org/10.15587/1729-4061.2018.133127
  19. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: http://doi.org/10.15587/1729-4061.2018.125926
  20. Ahn, C.-S., Kim, J.-Y. (2011). A study for a fire spread mechanism of residential buildings with numerical modeling. WIT Transactions on the Built Environment, 117, 185–196. doi: http://doi.org/10.2495/safe110171
  21. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: http://doi.org/10.15587/1729-4061.2017.108448
  22. Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: http://doi.org/10.15587/1729-4061.2017.101985
  23. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: http://doi.org/10.15587/1729-4061.2017.110092
  24. Angus, D. (2019). Recurrence Methods for Communication Data, Reflecting on 20 Years of Progress. Frontiers in Applied Mathematics and Statistics, 5. doi: http://doi.org/10.3389/fams.2019.00054
  25. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: http://doi.org/10.15587/1729-4061.2018.142995
  26. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: http://doi.org/10.15587/1729-4061.2017.117789
  27. Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. John Wiley & Sons. doi: http://doi.org/10.1002/9781118032428
  28. Shafi, I., Ahmad, J., Shah, S. I., Kashif, F. M. (2009). Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review. EURASIP Journal on Advances in Signal Processing, 2009 (1). doi: http://doi.org/10.1155/2009/673539
  29. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: http://doi.org/10.15587/1729-4061.2019.176579
  30. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et. al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: http://doi.org/10.15587/1729-4061.2021.226692
  31. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et. al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: http://doi.org/10.15587/1729-4061.2021.233606
  32. Mandel'brot, B. (2002). Fraktal'naya geometriya prirody. Moscow: Institut komp'yuternykh issledovaniy, 656.
  33. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et. al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: http://doi.org/10.15587/1729-4061.2020.210059
  34. Materials of 7th International Symposium on Recurrence Plots (2017).
  35. Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21 (4), 1003–1017. doi: http://doi.org/10.1142/s0218127411029008
  36. Marwan, N., Webber, C. L., Macau, E. E. N., Viana, R. L. (2018). Introduction to focus issue: Recurrence quantification analysis for understanding complex systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (8), 085601. doi: http://doi.org/10.1063/1.5050929
  37. Ramachandran, K. M., Tsokos, C. P. (2021). Mathematical Statistics with Applications in R. Elsevier Inc., 680.
  38. Cheng, R., Currie, C. (2009). Resampling methods of analysis in simulation studies. Proceedings of the 2009 Winter Simulation Conference, 45–59. doi: http://doi.org/10.1109/wsc.2009.5429319
  39. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et. al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: http://doi.org/10.15587/1729-4061.2019.187252
  40. Bakhrushyn, V. E. (2011). Metody analizu danykh. Zaporizhzhia: KPU, 268.
  41. Wasserman, L. (2006). All of nonparametric statistics. Springer, 270. doi: http://doi.org/10.1007/0-387-30623-4
  42. Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G. (2022). ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions. IEEE Transactions on Knowledge and Data Engineering, 1–1. doi: http://doi.org/10.1109/tkde.2022.3159580
  43. Naaman, M. (2021). On the tight constant in the multivariate Dvoretzky-Kiefer-Wolfowitz inequality. Statistics & Probability Letters, 173, 109088. doi: http://doi.org/10.1016/j.spl.2021.109088

Downloads

Published

2022-06-30

How to Cite

Sadkovyi, V., Pospelov, B., Rybka, E., Kreminskyi, B., Yashchenko, O., Bezuhla, Y., Darmofal, E., Kochanov, E., Hryshko, S., & Kozynska, I. (2022). Development of a method for assessing the reliability of fire detection in premises. Eastern-European Journal of Enterprise Technologies, 3(10 (117), 56–62. https://doi.org/10.15587/1729-4061.2022.259493