Розробка методу оцінки достовірності виявлення загорянь у приміщеннях
DOI:
https://doi.org/10.15587/1729-4061.2022.259493Ключові слова:
виявлення загорянь, емпірична функція розподілу, довірчий інтервал, ймовірність загоряння, рекурентністьАнотація
Об’єктом дослідження є виявлення загорянь у приміщеннях. Проблемою, що вирішувалась, є розробка інструментарію щодо оцінки достовірності виявлення загорянь у приміщеннях на основі рекурентності вектора прирощень небезпечних параметрів газового середовища. Метод включає послідовне виконання п'яти процедур, що пов’язані з формуванням вектора поточних прирощень небезпечних параметрів, визначенням рекурентності поточного вектора та оцінки емпіричної функції розподілу щодо обчисленої поточної рекурентності вектора стану. Особливості та відмінні риси розробленого методу полягають в використанні емпіричної кумулятивної функції розподілу щодо поточної рекурентності вектора прирощень стану небезпечних параметрів газового середовища у приміщеннях при загоряннях. Це дозволяє вирішити проблему розробки інструментарію щодо чисельного визначення довірчої межі для заданого рівня значущості (достовірності) та ймовірності виявлення загорянь в приміщеннях у реальному часі. Сферою та умовами практичного використання отриманих результатів можна вважати сучасні та перспективні засоби та системи протипожежного захисту різних типів приміщень в будівлях та спорудах. Виконано перевірку запропонованого методу на прикладі загоряння тестових матеріалів у лабораторній камері. Встановлено, що для матеріалів з високою швидкістю горіння (спирт та целюлоза) з ймовірністю 0,95 має місце різке зниження величини оцінки емпіричної функції до нульових значень. Для деревини значення цієї оцінки дорівнює 0,15, а для текстилю мінімальне значення оцінки дорівнює 0,31. Встановлено, що межі довірчого інтервалу з рівнем значущості, що покриває одержані оцінки визначаються величиною ±0,086. Загалом результати перевірки свідчать про працездатність запропонованого методу визначення достовірності виявлення загорянь у приміщеннях на основі поточної міри рекурентності прирощень небезпечних параметрів газового середовища.
Посилання
- Brushlinsky, N. N., Ahrens, M., Sokolov, S. V., Wagner, P. (2019). World Fire Statistics. Report No. 24. Berlin: Center of Fire Statistics of CTIF, 65.
- Mygalenko, K., Nuyanzin, V., Zemlianskyi, A., Dominik, A. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: http://doi.org/10.15587/1729-4061.2018.121727
- Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. doi: http://doi.org/10.5604/01.3001.0012.2830
- Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4), 186–195. doi: http://doi.org/10.6001/energetika.v64i4.3893
- Semko, A., Beskrovnaya, M., Vinogradov, S., Hritsina, I., Yagudina, N. (2017). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 3, 655–664.
- Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: http://doi.org/10.1088/1757-899x/708/1/012065
- Ragimov, S., Sobyna, V., Vambol, S., Vambol, V., Feshchenko, A., Zakora, A. et. al. (2018). Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 1 (91), 27–33. doi: http://doi.org/10.5604/01.3001.0012.9654
- Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: http://doi.org/10.1051/e3sconf/20186000003
- Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. doi: http://doi.org/10.15587/978-617-7319-43-5
- Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77.
- Kustov, M., Kalugin, V., Tutunik, V., Tarakhno, O. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 92–99. doi: http://doi.org/10.32434/0321-4095-2019-122-1-92-99
- Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation. 22 (3), 1171–1176.
- Reproduced with permission from Fire Loss in the United States During 2019 (2020). National Fire Protection Association, 11.
- Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finelydispersed water. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 38–43. doi: http://doi.org/10.15587/1729-4061.2018.127865
- Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: http://doi.org/10.1260/1750-9548.9.1.9
- Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et. al. (2019). Physical Features of Pollutants Spread in the Air During the Emergency at NPPs. Nuclear and Radiation Safety, 4 (84), 88–98. doi: http://doi.org/10.32918/nrs.2019.4(84).11
- Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: http://doi.org/10.15587/1729-4061.2018.122419
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: http://doi.org/10.15587/1729-4061.2018.133127
- Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: http://doi.org/10.15587/1729-4061.2018.125926
- Ahn, C.-S., Kim, J.-Y. (2011). A study for a fire spread mechanism of residential buildings with numerical modeling. WIT Transactions on the Built Environment, 117, 185–196. doi: http://doi.org/10.2495/safe110171
- Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: http://doi.org/10.15587/1729-4061.2017.108448
- Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: http://doi.org/10.15587/1729-4061.2017.101985
- Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by selfadjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: http://doi.org/10.15587/1729-4061.2017.110092
- Angus, D. (2019). Recurrence Methods for Communication Data, Reflecting on 20 Years of Progress. Frontiers in Applied Mathematics and Statistics, 5. doi: http://doi.org/10.3389/fams.2019.00054
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: http://doi.org/10.15587/1729-4061.2018.142995
- Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 50–56. doi: http://doi.org/10.15587/1729-4061.2017.117789
- Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. John Wiley & Sons. doi: http://doi.org/10.1002/9781118032428
- Shafi, I., Ahmad, J., Shah, S. I., Kashif, F. M. (2009). Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review. EURASIP Journal on Advances in Signal Processing, 2009 (1). doi: http://doi.org/10.1155/2009/673539
- Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: http://doi.org/10.15587/1729-4061.2019.176579
- Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et. al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: http://doi.org/10.15587/1729-4061.2021.226692
- Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et. al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: http://doi.org/10.15587/1729-4061.2021.233606
- Mandel'brot, B. (2002). Fraktal'naya geometriya prirody. Moscow: Institut komp'yuternykh issledovaniy, 656.
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et. al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: http://doi.org/10.15587/1729-4061.2020.210059
- Materials of 7th International Symposium on Recurrence Plots (2017).
- Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21 (4), 1003–1017. doi: http://doi.org/10.1142/s0218127411029008
- Marwan, N., Webber, C. L., Macau, E. E. N., Viana, R. L. (2018). Introduction to focus issue: Recurrence quantification analysis for understanding complex systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (8), 085601. doi: http://doi.org/10.1063/1.5050929
- Ramachandran, K. M., Tsokos, C. P. (2021). Mathematical Statistics with Applications in R. Elsevier Inc., 680.
- Cheng, R., Currie, C. (2009). Resampling methods of analysis in simulation studies. Proceedings of the 2009 Winter Simulation Conference, 45–59. doi: http://doi.org/10.1109/wsc.2009.5429319
- Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et. al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: http://doi.org/10.15587/1729-4061.2019.187252
- Bakhrushyn, V. E. (2011). Metody analizu danykh. Zaporizhzhia: KPU, 268.
- Wasserman, L. (2006). All of nonparametric statistics. Springer, 270. doi: http://doi.org/10.1007/0-387-30623-4
- Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G. (2022). ECOD: Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions. IEEE Transactions on Knowledge and Data Engineering, 1–1. doi: http://doi.org/10.1109/tkde.2022.3159580
- Naaman, M. (2021). On the tight constant in the multivariate Dvoretzky-Kiefer-Wolfowitz inequality. Statistics & Probability Letters, 173, 109088. doi: http://doi.org/10.1016/j.spl.2021.109088
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2022 Volodymyr Sadkovyi, Boris Pospelov, Evgenіy Rybka, Borys Kreminskyi, Oleksandr Yashchenko, Yuliia Bezuhla, Eleonora Darmofal, Eduard Kochanov, Svitlana Hryshko, Iryna Kozynska

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.