Investigation of the characteristics of Zn-Al layered double hydroxides, intercalated with natural dyes from spices, as a cosmetic pigments
DOI:
https://doi.org/10.15587/1729-4061.2022.260170Keywords:
Zn-Al layered double hydroxide, cosmetic pigment, intercalation, saffron, safflower, color, carotenoids, flavonoidsAbstract
Pigments are the main components of cosmetics, which determine both toxicity and consumer color characteristics. Zn-Al layered double hydroxides intercalated with anionic food dyes are promising pigments. The best sources of dyes for intercalation are natural ones. The most promising are spices. Natural dyes from spices are often biologically active substances. The parameters of samples of Zn-Al (Zn:Al=3:1) hydroxides intercalated with natural food dyes, synthesized in the medium of aqueous tinctures of saffron and safflower, were studied. The crystal structure of the samples was studied by X-ray phase analysis; color characteristics were studied by spectroscopy and calculation of parameters in the CIE L*a*b system.
The possibility of synthesizing Zn-Al colored layered double hydroxides intercalated with natural dyes in the medium of saffron and safflower tinctures was shown. X-ray phase analysis showed that both pigment samples were layered double hydroxides with the α-Zn(OH)2 structure. For the pigment intercalated with saffron dye, the phenomenon of partial decomposition of Zn-Al LDH to ZnO during synthesis was revealed. The color characteristics of the samples were studied. Zn-Al LDH pigment synthesized in a saffron tincture had a bright yellow color determined by intercalated saffron carotenoids (crocin and crocetin). It was suggested that safflower dye flavonoids were partially hydrolyzed (red ones - cartamine and cartamidine, and yellow - Safflor Yellow A), which led to the formation of a dark orange-brown color of the sample. The prospects of using Zn-Al LDH intercalated with saffron food dyes as a cosmetic pigment were shown
References
- Kesavan Pillai, S., Kleyi, P., de Beer, M., Mudaly, P. (2020). Layered double hydroxides: An advanced encapsulation and delivery system for cosmetic ingredients-an overview. Applied Clay Science, 199, 105868. doi: https://doi.org/10.1016/j.clay.2020.105868
- Viseras, C., Sánchez-Espejo, R., Palumbo, R., Liccardi, N., García-Villén, F., Borrego-Sánchez, A. et. al. (2021). Clays in cosmetics and personal-care products. Clays and Clay Minerals, 69 (5), 561–575. doi: https://doi.org/10.1007/s42860-021-00154-5
- Khan, A. I., Ragavan, A., Fong, B., Markland, C., O’Brien, M., Dunbar, T. G. et. al. (2009). Recent Developments in the Use of Layered Double Hydroxides as Host Materials for the Storage and Triggered Release of Functional Anions. Industrial & Engineering Chemistry Research, 48 (23), 10196–10205. doi: https://doi.org/10.1021/ie9012612
- Mandal, S., Tichit, D., Lerner, D. A., Marcotte, N. (2009). Azoic Dye Hosted in Layered Double Hydroxide: Physicochemical Characterization of the Intercalated Materials. Langmuir, 25 (18), 10980–10986. doi: https://doi.org/10.1021/la901201s
- Mandal, S., Lerner, D. A., Marcotte, N., Tichit, D. (2009). Structural characterization of azoic dye hosted layered double hydroxides. Zeitschrift Für Kristallographie, 224 (5-6), 282–286. doi: https://doi.org/10.1524/zkri.2009.1150
- Wang, Q., Feng, Y., Feng, J., Li, D. (2011). Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides. Journal of Solid State Chemistry, 184 (6), 1551–1555. doi: https://doi.org/10.1016/j.jssc.2011.04.020
- Liu, J. Q., Zhang, X. C., Hou, W. G., Dai, Y. Y., Xiao, H., Yan, S. S. (2009). Synthesis and Characterization of Methyl-Red/Layered Double Hydroxide (LDH) Nanocomposite. Advanced Materials Research, 79-82, 493–496. doi: https://doi.org/10.4028/www.scientific.net/amr.79-82.493
- Tian, Y., Wang, G., Li, F., Evans, D. G. (2007). Synthesis and thermo-optical stability of o-methyl red-intercalated Ni–Fe layered double hydroxide material. Materials Letters, 61 (8-9), 1662–1666. doi: https://doi.org/10.1016/j.matlet.2006.07.094
- Hwang, S.-H., Jung, S.-C., Yoon, S.-M., Kim, D.-K. (2008). Preparation and characterization of dye-intercalated Zn–Al-layered double hydroxide and its surface modification by silica coating. Journal of Physics and Chemistry of Solids, 69 (5-6), 1061–1065. doi: https://doi.org/10.1016/j.jpcs.2007.11.002
- Tang, P., Deng, F., Feng, Y., Li, D. (2012). Mordant Yellow 3 Anions Intercalated Layered Double Hydroxides: Preparation, Thermo- and Photostability. Industrial & Engineering Chemistry Research, 51 (32), 10542–10545. doi: https://doi.org/10.1021/ie300645b
- Tang, P., Feng, Y., Li, D. (2011). Fabrication and properties of Acid Yellow 49 dye-intercalated layered double hydroxides film on an alumina-coated aluminum substrate. Dyes and Pigments, 91 (2), 120–125. doi: https://doi.org/10.1016/j.dyepig.2011.03.012
- Tang, P., Feng, Y., Li, D. (2011). Improved thermal and photostability of an anthraquinone dye by intercalation in a zinc–aluminum layered double hydroxides host. Dyes and Pigments, 90 (3), 253–258. doi: https://doi.org/10.1016/j.dyepig.2011.01.007
- Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
- Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
- Shamim, M., Dana, K. (2017). Efficient removal of Evans blue dye by Zn–Al–NO3 layered double hydroxide. International Journal of Environmental Science and Technology, 15 (6), 1275–1284. doi: https://doi.org/10.1007/s13762-017-1478-9
- Mahjoubi, F. Z., Khalidi, A., Abdennouri, M., Barka, N. (2017). Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: Synthesis, characterisation and dye removal properties. Journal of Taibah University for Science, 11 (1), 90–100. doi: https://doi.org/10.1016/j.jtusci.2015.10.007
- Pahalagedara, M. N., Samaraweera, M., Dharmarathna, S., Kuo, C.-H., Pahalagedara, L. R., Gascón, J. A., Suib, S. L. (2014). Removal of Azo Dyes: Intercalation into Sonochemically Synthesized NiAl Layered Double Hydroxide. The Journal of Physical Chemistry C, 118 (31), 17801–17809. doi: https://doi.org/10.1021/jp505260a
- Darmograi, G., Prelot, B., Layrac, G., Tichit, D., Martin-Gassin, G., Salles, F., Zajac, J. (2015). Study of Adsorption and Intercalation of Orange-Type Dyes into Mg–Al Layered Double Hydroxide. The Journal of Physical Chemistry C, 119 (41), 23388–23397. doi: https://doi.org/10.1021/acs.jpcc.5b05510
- Marangoni, R., Bouhent, M., Taviot-Guého, C., Wypych, F., Leroux, F. (2009). Zn2Al layered double hydroxides intercalated and adsorbed with anionic blue dyes: A physico-chemical characterization. Journal of Colloid and Interface Science, 333 (1), 120–127. doi: https://doi.org/10.1016/j.jcis.2009.02.001
- El Hassani, K., Beakou, B. H., Kalnina, D., Oukani, E., Anouar, A. (2017). Effect of morphological properties of layered double hydroxides on adsorption of azo dye Methyl Orange: A comparative study. Applied Clay Science, 140, 124–131. doi: https://doi.org/10.1016/j.clay.2017.02.010
- Abdellaoui, K., Pavlovic, I., Bouhent, M., Benhamou, A., Barriga, C. (2017). A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides. Applied Clay Science, 143, 142–150. doi: https://doi.org/10.1016/j.clay.2017.03.019
- Santos, R. M. M. dos, Gonçalves, R. G. L., Constantino, V. R. L., Santilli, C. V., Borges, P. D., Tronto, J., Pinto, F. G. (2017). Adsorption of Acid Yellow 42 dye on calcined layered double hydroxide: Effect of time, concentration, pH and temperature. Applied Clay Science, 140, 132–139. doi: https://doi.org/10.1016/j.clay.2017.02.005
- Bharali, D., Deka, R. C. (2017). Adsorptive removal of congo red from aqueous solution by sonochemically synthesized NiAl layered double hydroxide. Journal of Environmental Chemical Engineering, 5 (2), 2056–2067. doi: https://doi.org/10.1016/j.jece.2017.04.012
- Ahmed, M. A., brick, A. A., Mohamed, A. A. (2017). An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. Chemosphere, 174, 280–288. doi: https://doi.org/10.1016/j.chemosphere.2017.01.147
- Arizaga, G. G. C., Gardolinski, J. E. F. da C., Schreiner, W. H., Wypych, F. (2009). Intercalation of an oxalatooxoniobate complex into layered double hydroxide and layered zinc hydroxide nitrate. Journal of Colloid and Interface Science, 330 (2), 352–358. doi: https://doi.org/10.1016/j.jcis.2008.10.025
- Andrade, K. N., Pérez, A. M. P., Arízaga, G. G. C. (2019). Passive and active targeting strategies in hybrid layered double hydroxides nanoparticles for tumor bioimaging and therapy. Applied Clay Science, 181, 105214. doi: https://doi.org/10.1016/j.clay.2019.105214
- Kovalenko, V., Kotok, V., Yeroshkina, A., Zaychuk, A. (2017). Synthesis and characterisation of dyeintercalated nickelaluminium layereddouble hydroxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: https://doi.org/10.15587/1729-4061.2017.109814
- Cursino, A. C. T., Rives, V., Arizaga, G. G. C., Trujillano, R., Wypych, F. (2015). Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer. Materials Research Bulletin, 70, 336–342. doi: https://doi.org/10.1016/j.materresbull.2015.04.055
- Mironyak, M., Volnyanska, O., Labyak, O., Kovalenko, V., Kotok, V. (2019). Development of a potentiometric sensor sensitive to polysorbate 20. EUREKA: Physics and Engineering, 4, 3–9. doi: https://doi.org/10.21303/2461-4262.2019.00942
- Kovalenko, V., Kotok, V. (2019). “Smart” anticorrosion pigment based on layered double hydroxide: construction and characterization. Eastern-European Journal of Enterprise Technologies, 4 (12 (100)), 23–30. doi: https://doi.org/10.15587/1729-4061.2019.176690
- Carbajal Arízaga, G. G., Sánchez Jiménez, C., Parra Saavedra, K. J., Macías Lamas, A. M., Puebla Pérez, A. M. (2016). Folate‐intercalated layered double hydroxide as a vehicle for cyclophosphamide, a non‐ionic anti‐cancer drug. Micro & Nano Letters, 11 (7), 360–362. doi: https://doi.org/10.1049/mnl.2016.0106
- Ghotbi, M. Y., Hussein, M. Z. bin, Yahaya, A. H., Rahman, M. Z. A. (2009). LDH-intercalated d-gluconate: Generation of a new food additive-inorganic nanohybrid compound. Journal of Physics and Chemistry of Solids, 70 (6), 948–954. doi: https://doi.org/10.1016/j.jpcs.2009.05.007
- Hong, M.-M., Oh, J.-M., Choy, J.-H. (2008). Encapsulation of Flavor Molecules, 4-Hydroxy-3-Methoxy Benzoic Acid, into Layered Inorganic Nanoparticles for Controlled Release of Flavor. Journal of Nanoscience and Nanotechnology, 8 (10), 5018–5021. doi: https://doi.org/10.1166/jnn.2008.1385
- Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
- Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
- Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
- Solovov, V., Кovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: https://doi.org/10.15587/1729-4061.2017.90873
- Kovalenko, V., Kotok, V. (2019). Anionic carbonate activation of layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 3 (6 (99)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.169461
- Nalawade, P., Aware, B., Kadam, V. J., Hirlekar, R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research, 68, 267–272. Available at: https://www.hazemsakeek.net/wp-content/uploads/2021/06/LDH.pdf
- Delhoyo, C. (2007). Layered double hydroxides and human health: An overview. Applied Clay Science, 36 (1-3), 103–121. doi: https://doi.org/10.1016/j.clay.2006.06.010
- Solovov, V. A., Nikolenko, N. V., Kovalenko, V. L., Kotok, V. A., Burkov, A. А., Kondrat’ev, D. A. et. al. (2018). Synthesis of Ni(II)-Ti(IV) Layered Double Hydroxides Using Coprecipitation At High Supersaturation Method. ARPN Journal of Engineering and Applied Sciences, 24 (13), 9652–9656. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_1218_7500.pdf
- Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of NiAl hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
- Kovalenko, V., Kotok, V. (2019). Investigation of characteristics of double Ni–Co and ternary Ni–Co–Al layered hydroxides for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 58–66. doi: https://doi.org/10.15587/1729-4061.2019.164792
- Kovalenko, V. L., Kotok, V. A., Sykchin, A., Ananchenko, B. A., Chernyad’ev, A. V., Burkov, A. A. et. al. (2020). Al3+ Additive in the Nickel Hydroxide Obtained by High-Temperature Two-Step Synthesis: Activator or Poisoner for Chemical Power Source Application? Journal of The Electrochemical Society, 167 (10), 100530. doi: https://doi.org/10.1149/1945-7111/ab9a2a
- Saikia, H., Ganguli, J. N. (2012). Intercalation of Azo Dyes in Ni-Al Layered Double Hydroxides. Asian Journal of Chemistry, 24 (12), 5909–5913. Available at: https://asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=24_12_134
- Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.103010
- Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
- Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
- Kovalenko, V., Kotok, V. (2020). Tartrazine-intercalated Zn–Al layered double hydroxide as a pigment for gel nail polish: synthesis and characterisation. Eastern-European Journal of Enterprise Technologies, 3 (12 (105)), 29–37. doi: https://doi.org/10.15587/1729-4061.2020.205607
- Kovalenko, V., Kotok, V. (2020). Bifuctional indigocarminintercalated NiAl layered double hydroxide: investigation of characteristics for pigment and supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (12 (104)), 30–39. doi: https://doi.org/10.15587/1729-4061.2020.201282
- Tariq, N., Majeed, M. I., Hanif, M. A., Rehman, R. (2020). Pholi (Wild Safflower). Medicinal Plants of South Asia, 557–569. doi: https://doi.org/10.1016/b978-0-08-102659-5.00041-0
- Alihosseini, F., Sun, G. (2011). Antibacterial colorants for textiles. Functional Textiles for Improved Performance, Protection and Health, 376–403. doi: https://doi.org/10.1533/9780857092878.376
- Saito, K. (1994). Is carthamine a single component? Journal of the Society of Dyers and Colourists, 110 (8), 270–273. doi: https://doi.org/10.1111/j.1478-4408.1994.tb01655.x
- Radcliffe, L. B. (1897). On carthamin: the colouring matter of safflower. Journal of the Society of Dyers and Colourists, 13 (8), 158–160. doi: https://doi.org/10.1111/j.1478-4408.1897.tb00121.x
- Sasaki, M., Takahashi, K. (2021). Complete Assignment of the 1H and 13C NMR Spectra of Carthamin Potassium Salt Isolated from Carthamus tinctorius L. Molecules, 26 (16), 4953. doi: https://doi.org/10.3390/molecules26164953
- Takahashi, Y., Miyasaka, N., Tasaka, S., Miura, I., Urano, S., Ikura, M. et. al. (1982). Constitution of two coloring matters in the flower petals of L. Tetrahedron Letters, 23 (49), 5163–5166. doi: https://doi.org/10.1016/s0040-4039(00)85786-x
- Golkar, P. (2018). Inheritance of carthamin and carthamidin in safflower (Carthamus tinctorius L.). Journal of Genetics, 97 (1), 331–336. doi: https://doi.org/10.1007/s12041-018-0909-9
- Dehariya, R., Dixit, A. K. (2015). A Review on Potential Pharmacological Uses of Carthamus tinctorius L. World Journal of Pharmaceutical Sciences, 3 (8), 1741–1746. Available at: https://wjpsonline.com/index.php/wjps/article/view/potential-pharmacological-uses-carthamus-tinctorius/1086
- Dehariya, R., Chandrakar, J., Dubey, S., Ojha, K., Dixit, A. K. (2020). Scavenging and metal chelating potential of Carthamus tinctorius L. extracts. Current Botany, 11, 43–50. doi: https://doi.org/10.25081/cb.2020.v11.6009
- Khan, M., Hanif, M. A., Ayub, M. A., Jilani, M. I., Shahid Chatha, S. A. (2020). Saffron. Medicinal Plants of South Asia, 587–600. doi: https://doi.org/10.1016/b978-0-08-102659-5.00043-4
- Heydari, M., zare, M., Badie, M. R., Watson, R. R., Talebnejad, M. R., Afarid, M. (2022). Crocin as a vision supplement. Clinical and Experimental Optometry, 1–8. doi: https://doi.org/10.1080/08164622.2022.2039554
- Siddiqui, S. A., Ali Redha, A., Snoeck, E. R., Singh, S., Simal-Gandara, J., Ibrahim, S. A., Jafari, S. M. (2022). Anti-Depressant Properties of Crocin Molecules in Saffron. Molecules, 27 (7), 2076. doi: https://doi.org/10.3390/molecules27072076
- Hatziagapiou, K., Nikola, O., Marka, S., Koniari, E., Kakouri, E., Zografaki, M.-E. et. al. (2022). An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants, 11 (6), 1074. doi: https://doi.org/10.3390/antiox11061074
- Kovalenko, V., Kotok, V. (2020). Determination of the applicability of ZnAl layered double hydroxide, intercalated by food dye Orange Yellow S, as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (107)), 81–89. doi: https://doi.org/10.15587/1729-4061.2020.214847
- Kovalenko, V., Kotok, V. (2021). The determination of synthesis conditions and color properties of pigments based on layered double hydroxides with Co as a guest cation. Eastern-European Journal of Enterprise Technologies, 6 (6 (114)), 32–38. doi: https://doi.org/10.15587/1729-4061.2021.247160
- Kovalenko, V., Borysenko, A., Kotok, V., Nafeev, R., Verbitskiy, V., Melnyk, O. (2022). Determination of the dependence of the structure of Zn-Al layered double hydroxides, as a matrix for functional anions intercalation, on synthesis conditions. Eastern-European Journal of Enterprise Technologies, 1 (12 (115)), 12–20. doi: https://doi.org/10.15587/1729-4061.2022.252738
- Kovalenko, V., Borysenko, A., Kotok, V., Nafeev, R., Verbitskiy, V., Melnyk, O. (2022). Determination of technological parameters of Zn-Al layered double hydroxides, as a matrix for functional anions intercalation, under different synthesis conditions. Eastern-European Journal of Enterprise Technologies, 2 (6 (116)), 25–32. doi: https://doi.org/10.15587/1729-4061.2022.254496
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vadym Kovalenko, Valerii Kotok, Anastasiia Borysenko, Anton Dopira, Anhelina Rezvantseva, Rovil Nafeev, Volodymyr Verbitskiy, Dmitry Sukhomlyn
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.