Дослідження характеристик Zn-Al подвійно-шарових гідроксидів, інтеркальованих природними барвникати зі спецій, як косметичних пігментів

Автор(и)

  • Вадим Леонідович Коваленко Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0002-8012-6732
  • Валерій Анатолійович Коток Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0001-8879-7189
  • Анастасія Юріївна Борисенко Національний еколого-натуралістичний центр учнівської молоді, Україна https://orcid.org/0000-0002-2732-5660
  • Антон Юрійович Допіра Національний еколого-натуралістичний центр учнівської молоді, Україна https://orcid.org/0000-0001-9391-3543
  • Ангеліна Олександрівна Резванцева Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0002-9662-6213
  • Ровіл Касимович Нафєєв Державний університет телекомунікацій, Україна https://orcid.org/0000-0003-2721-9718
  • Володимир Валентинович Вербицький Національний педагогічний університет ім. Драгоманова; Національний еколого-натуралістичний центр учнівської молоді, Україна https://orcid.org/0000-0001-7045-8293
  • Дмитро Андрійович Cухомлин Український державний хіміко-технологічний університет, Україна https://orcid.org/0000-0002-5714-3454

DOI:

https://doi.org/10.15587/1729-4061.2022.260170

Ключові слова:

Zn–Al подвійно-шаровий гідроксид, косметичний пігмент, інтеркалювання, шафран, сафлор, каротиноїди, флавоноїди

Анотація

Пігменти є основними компонентами косметичних засобів, які визначають і токсичність, і споживчі колірні властивості. Zn-Al подвійно-шарові гідроксиди, інтеркальовані харчовими барвниками аніонного типу, є перспективними косметичними пігментами. Найкращими джерелами барвників для інтеркалювання є природними. Найбільш перспективними є прянощі. Природні барвники із складу прянощів часто є біологічно-активними речовинами. Вивчені параметри зразків Zn-Al (Zn:Al=3:1) гідроксидів, інтеркальованих природними харчовими барвниками, синтезованих в середовищі водних настоїв шафрана та сафлора. Кристалічна структура зразків вивчена методом ренгенофазового аналізу, характеристики кольору – методом спектроскопії та розрахунку параметрів в системі CIE L*a*b.

Показана можливість синтезу забарвлених Zn-Al подвійно-шарових гідроксидів, інтеркальованих природними барвниками, в середовищі настоїв шафрана та сафлора. Методом рентгенофазового аналізу, показано что обидва зразка пігментів є подвійно-шаровими гідроксидами зі структурою α-Zn(OH)2. Для пігменту, інтеркальованого барвниками шафрана, виявлено явище часткового розпаду Zn-Al ПШГ до ZnO під час синтезу. Вивчено характеристики кольору зразків. Zn-Al ПШГ пігмент, синтезований в настої шафрану, має яскраво-жовтий колір, визначаємий інтеркальованими каротиноїдами шафрана (кроцином та кроцетином). Висловлено припущення щодо часткового гідролізу флавоноїдів-барвників сафлора (красних – картаміна та картамідіна, та жовтого – Safflor Eellow A), що призвело до формування темного оранжево-коричневого кольору зразка. Показана перспективність використання Zn-Al ПШГ, інтеркальованих харчовими барвниками шафрану, в якості косметичного пігменту

Біографії авторів

Вадим Леонідович Коваленко, Український державний хіміко-технологічний університет

Кандидат технічних наук, доцент

Кафедра аналітичної хімії та хімічної технології харчових добавок і косметичних засобів

Валерій Анатолійович Коток, Український державний хіміко-технологічний університет

Кандидат технічних наук, доцент

Кафедра процесів і апаратів, та загальної хімічної технології

Анастасія Юріївна Борисенко, Національний еколого-натуралістичний центр учнівської молоді

Аспірант

Ангеліна Олександрівна Резванцева, Український державний хіміко-технологічний університет

Кафедра аналітичної хімії та хімічної технології харчових добавок і косметичних засобів

Ровіл Касимович Нафєєв, Державний університет телекомунікацій

Кандидат фізико-математичних наук, доцент

Кафедра фізики

Володимир Валентинович Вербицький, Національний педагогічний університет ім. Драгоманова; Національний еколого-натуралістичний центр учнівської молоді

Доктор педагогічних наук, професор, директор

Кафедра медичних, біологічних та валеологічних основ захисту життя та здоров’я

Дмитро Андрійович Cухомлин, Український державний хіміко-технологічний університет

Кандидат хімічних наук, доцент

Кафедра фізичної хімії

Посилання

  1. Kesavan Pillai, S., Kleyi, P., de Beer, M., Mudaly, P. (2020). Layered double hydroxides: An advanced encapsulation and delivery system for cosmetic ingredients-an overview. Applied Clay Science, 199, 105868. doi: https://doi.org/10.1016/j.clay.2020.105868
  2. Viseras, C., Sánchez-Espejo, R., Palumbo, R., Liccardi, N., García-Villén, F., Borrego-Sánchez, A. et. al. (2021). Clays in cosmetics and personal-care products. Clays and Clay Minerals, 69 (5), 561–575. doi: https://doi.org/10.1007/s42860-021-00154-5
  3. Khan, A. I., Ragavan, A., Fong, B., Markland, C., O’Brien, M., Dunbar, T. G. et. al. (2009). Recent Developments in the Use of Layered Double Hydroxides as Host Materials for the Storage and Triggered Release of Functional Anions. Industrial & Engineering Chemistry Research, 48 (23), 10196–10205. doi: https://doi.org/10.1021/ie9012612
  4. Mandal, S., Tichit, D., Lerner, D. A., Marcotte, N. (2009). Azoic Dye Hosted in Layered Double Hydroxide: Physicochemical Characterization of the Intercalated Materials. Langmuir, 25 (18), 10980–10986. doi: https://doi.org/10.1021/la901201s
  5. Mandal, S., Lerner, D. A., Marcotte, N., Tichit, D. (2009). Structural characterization of azoic dye hosted layered double hydroxides. Zeitschrift Für Kristallographie, 224 (5-6), 282–286. doi: https://doi.org/10.1524/zkri.2009.1150
  6. Wang, Q., Feng, Y., Feng, J., Li, D. (2011). Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides. Journal of Solid State Chemistry, 184 (6), 1551–1555. doi: https://doi.org/10.1016/j.jssc.2011.04.020
  7. Liu, J. Q., Zhang, X. C., Hou, W. G., Dai, Y. Y., Xiao, H., Yan, S. S. (2009). Synthesis and Characterization of Methyl-Red/Layered Double Hydroxide (LDH) Nanocomposite. Advanced Materials Research, 79-82, 493–496. doi: https://doi.org/10.4028/www.scientific.net/amr.79-82.493
  8. Tian, Y., Wang, G., Li, F., Evans, D. G. (2007). Synthesis and thermo-optical stability of o-methyl red-intercalated Ni–Fe layered double hydroxide material. Materials Letters, 61 (8-9), 1662–1666. doi: https://doi.org/10.1016/j.matlet.2006.07.094
  9. Hwang, S.-H., Jung, S.-C., Yoon, S.-M., Kim, D.-K. (2008). Preparation and characterization of dye-intercalated Zn–Al-layered double hydroxide and its surface modification by silica coating. Journal of Physics and Chemistry of Solids, 69 (5-6), 1061–1065. doi: https://doi.org/10.1016/j.jpcs.2007.11.002
  10. Tang, P., Deng, F., Feng, Y., Li, D. (2012). Mordant Yellow 3 Anions Intercalated Layered Double Hydroxides: Preparation, Thermo- and Photostability. Industrial & Engineering Chemistry Research, 51 (32), 10542–10545. doi: https://doi.org/10.1021/ie300645b
  11. Tang, P., Feng, Y., Li, D. (2011). Fabrication and properties of Acid Yellow 49 dye-intercalated layered double hydroxides film on an alumina-coated aluminum substrate. Dyes and Pigments, 91 (2), 120–125. doi: https://doi.org/10.1016/j.dyepig.2011.03.012
  12. Tang, P., Feng, Y., Li, D. (2011). Improved thermal and photostability of an anthraquinone dye by intercalation in a zinc–aluminum layered double hydroxides host. Dyes and Pigments, 90 (3), 253–258. doi: https://doi.org/10.1016/j.dyepig.2011.01.007
  13. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  14. Kovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
  15. Shamim, M., Dana, K. (2017). Efficient removal of Evans blue dye by Zn–Al–NO3 layered double hydroxide. International Journal of Environmental Science and Technology, 15 (6), 1275–1284. doi: https://doi.org/10.1007/s13762-017-1478-9
  16. Mahjoubi, F. Z., Khalidi, A., Abdennouri, M., Barka, N. (2017). Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: Synthesis, characterisation and dye removal properties. Journal of Taibah University for Science, 11 (1), 90–100. doi: https://doi.org/10.1016/j.jtusci.2015.10.007
  17. Pahalagedara, M. N., Samaraweera, M., Dharmarathna, S., Kuo, C.-H., Pahalagedara, L. R., Gascón, J. A., Suib, S. L. (2014). Removal of Azo Dyes: Intercalation into Sonochemically Synthesized NiAl Layered Double Hydroxide. The Journal of Physical Chemistry C, 118 (31), 17801–17809. doi: https://doi.org/10.1021/jp505260a
  18. Darmograi, G., Prelot, B., Layrac, G., Tichit, D., Martin-Gassin, G., Salles, F., Zajac, J. (2015). Study of Adsorption and Intercalation of Orange-Type Dyes into Mg–Al Layered Double Hydroxide. The Journal of Physical Chemistry C, 119 (41), 23388–23397. doi: https://doi.org/10.1021/acs.jpcc.5b05510
  19. Marangoni, R., Bouhent, M., Taviot-Guého, C., Wypych, F., Leroux, F. (2009). Zn2Al layered double hydroxides intercalated and adsorbed with anionic blue dyes: A physico-chemical characterization. Journal of Colloid and Interface Science, 333 (1), 120–127. doi: https://doi.org/10.1016/j.jcis.2009.02.001
  20. El Hassani, K., Beakou, B. H., Kalnina, D., Oukani, E., Anouar, A. (2017). Effect of morphological properties of layered double hydroxides on adsorption of azo dye Methyl Orange: A comparative study. Applied Clay Science, 140, 124–131. doi: https://doi.org/10.1016/j.clay.2017.02.010
  21. Abdellaoui, K., Pavlovic, I., Bouhent, M., Benhamou, A., Barriga, C. (2017). A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides. Applied Clay Science, 143, 142–150. doi: https://doi.org/10.1016/j.clay.2017.03.019
  22. Santos, R. M. M. dos, Gonçalves, R. G. L., Constantino, V. R. L., Santilli, C. V., Borges, P. D., Tronto, J., Pinto, F. G. (2017). Adsorption of Acid Yellow 42 dye on calcined layered double hydroxide: Effect of time, concentration, pH and temperature. Applied Clay Science, 140, 132–139. doi: https://doi.org/10.1016/j.clay.2017.02.005
  23. Bharali, D., Deka, R. C. (2017). Adsorptive removal of congo red from aqueous solution by sonochemically synthesized NiAl layered double hydroxide. Journal of Environmental Chemical Engineering, 5 (2), 2056–2067. doi: https://doi.org/10.1016/j.jece.2017.04.012
  24. Ahmed, M. A., brick, A. A., Mohamed, A. A. (2017). An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. Chemosphere, 174, 280–288. doi: https://doi.org/10.1016/j.chemosphere.2017.01.147
  25. Arizaga, G. G. C., Gardolinski, J. E. F. da C., Schreiner, W. H., Wypych, F. (2009). Intercalation of an oxalatooxoniobate complex into layered double hydroxide and layered zinc hydroxide nitrate. Journal of Colloid and Interface Science, 330 (2), 352–358. doi: https://doi.org/10.1016/j.jcis.2008.10.025
  26. Andrade, K. N., Pérez, A. M. P., Arízaga, G. G. C. (2019). Passive and active targeting strategies in hybrid layered double hydroxides nanoparticles for tumor bioimaging and therapy. Applied Clay Science, 181, 105214. doi: https://doi.org/10.1016/j.clay.2019.105214
  27. Kovalenko, V., Kotok, V., Yeroshkina, A., Zaychuk, A. (2017). Synthesis and characterisation of dye­intercalated nickel­aluminium layered­double hydroxide as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 27–33. doi: https://doi.org/10.15587/1729-4061.2017.109814
  28. Cursino, A. C. T., Rives, V., Arizaga, G. G. C., Trujillano, R., Wypych, F. (2015). Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer. Materials Research Bulletin, 70, 336–342. doi: https://doi.org/10.1016/j.materresbull.2015.04.055
  29. Mironyak, M., Volnyanska, O., Labyak, O., Kovalenko, V., Kotok, V. (2019). Development of a potentiometric sensor sensitive to polysorbate 20. EUREKA: Physics and Engineering, 4, 3–9. doi: https://doi.org/10.21303/2461-4262.2019.00942
  30. Kovalenko, V., Kotok, V. (2019). “Smart” anti­corrosion pigment based on layered double hydroxide: construction and characterization. Eastern-European Journal of Enterprise Technologies, 4 (12 (100)), 23–30. doi: https://doi.org/10.15587/1729-4061.2019.176690
  31. Carbajal Arízaga, G. G., Sánchez Jiménez, C., Parra Saavedra, K. J., Macías Lamas, A. M., Puebla Pérez, A. M. (2016). Folate‐intercalated layered double hydroxide as a vehicle for cyclophosphamide, a non‐ionic anti‐cancer drug. Micro & Nano Letters, 11 (7), 360–362. doi: https://doi.org/10.1049/mnl.2016.0106
  32. Ghotbi, M. Y., Hussein, M. Z. bin, Yahaya, A. H., Rahman, M. Z. A. (2009). LDH-intercalated d-gluconate: Generation of a new food additive-inorganic nanohybrid compound. Journal of Physics and Chemistry of Solids, 70 (6), 948–954. doi: https://doi.org/10.1016/j.jpcs.2009.05.007
  33. Hong, M.-M., Oh, J.-M., Choy, J.-H. (2008). Encapsulation of Flavor Molecules, 4-Hydroxy-3-Methoxy Benzoic Acid, into Layered Inorganic Nanoparticles for Controlled Release of Flavor. Journal of Nanoscience and Nanotechnology, 8 (10), 5018–5021. doi: https://doi.org/10.1166/jnn.2008.1385
  34. Rajamathi, M., Vishnu Kamath, P., Seshadri, R. (2000). Polymorphism in nickel hydroxide: role of interstratification. Journal of Materials Chemistry, 10 (2), 503–506. doi: https://doi.org/10.1039/a905651c
  35. Kotok, V., Kovalenko, V., Malyshev, V. (2017). Comparison of oxygen evolution parameters on different types of nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.109770
  36. Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
  37. Solovov, V., Кovalenko, V., Nikolenko, N., Kotok, V., Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1 (6 (85)), 16–22. doi: https://doi.org/10.15587/1729-4061.2017.90873
  38. Kovalenko, V., Kotok, V. (2019). Anionic carbonate activation of layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 3 (6 (99)), 44–52. doi: https://doi.org/10.15587/1729-4061.2019.169461
  39. Nalawade, P., Aware, B., Kadam, V. J., Hirlekar, R. S. (2009). Layered double hydroxides: A review. Journal of Scientific & Industrial Research, 68, 267–272. Available at: https://www.hazemsakeek.net/wp-content/uploads/2021/06/LDH.pdf
  40. Delhoyo, C. (2007). Layered double hydroxides and human health: An overview. Applied Clay Science, 36 (1-3), 103–121. doi: https://doi.org/10.1016/j.clay.2006.06.010
  41. Solovov, V. A., Nikolenko, N. V., Kovalenko, V. L., Kotok, V. A., Burkov, A. А., Kondrat’ev, D. A. et. al. (2018). Synthesis of Ni(II)-Ti(IV) Layered Double Hydroxides Using Coprecipitation At High Supersaturation Method. ARPN Journal of Engineering and Applied Sciences, 24 (13), 9652–9656. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_1218_7500.pdf
  42. Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
  43. Kovalenko, V., Kotok, V. (2019). Investigation of characteristics of double Ni–Co and ternary Ni–Co–Al layered hydroxides for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 58–66. doi: https://doi.org/10.15587/1729-4061.2019.164792
  44. Kovalenko, V. L., Kotok, V. A., Sykchin, A., Ananchenko, B. A., Chernyad’ev, A. V., Burkov, A. A. et. al. (2020). Al3+ Additive in the Nickel Hydroxide Obtained by High-Temperature Two-Step Synthesis: Activator or Poisoner for Chemical Power Source Application? Journal of The Electrochemical Society, 167 (10), 100530. doi: https://doi.org/10.1149/1945-7111/ab9a2a
  45. Saikia, H., Ganguli, J. N. (2012). Intercalation of Azo Dyes in Ni-Al Layered Double Hydroxides. Asian Journal of Chemistry, 24 (12), 5909–5913. Available at: https://asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=24_12_134
  46. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.103010
  47. Kotok, V., Kovalenko, V. (2018). A study of multilayered electrochromic platings based on nickel and cobalt hydroxides. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.121679
  48. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
  49. Kovalenko, V., Kotok, V. (2020). Tartrazine-intercalated Zn–Al layered double hydroxide as a pigment for gel nail polish: synthesis and characterisation. Eastern-European Journal of Enterprise Technologies, 3 (12 (105)), 29–37. doi: https://doi.org/10.15587/1729-4061.2020.205607
  50. Kovalenko, V., Kotok, V. (2020). Bifuctional indigocarmin­intercalated Ni­Al layered double hydroxide: investigation of characteristics for pigment and supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (12 (104)), 30–39. doi: https://doi.org/10.15587/1729-4061.2020.201282
  51. Tariq, N., Majeed, M. I., Hanif, M. A., Rehman, R. (2020). Pholi (Wild Safflower). Medicinal Plants of South Asia, 557–569. doi: https://doi.org/10.1016/b978-0-08-102659-5.00041-0
  52. Alihosseini, F., Sun, G. (2011). Antibacterial colorants for textiles. Functional Textiles for Improved Performance, Protection and Health, 376–403. doi: https://doi.org/10.1533/9780857092878.376
  53. Saito, K. (1994). Is carthamine a single component? Journal of the Society of Dyers and Colourists, 110 (8), 270–273. doi: https://doi.org/10.1111/j.1478-4408.1994.tb01655.x
  54. Radcliffe, L. B. (1897). On carthamin: the colouring matter of safflower. Journal of the Society of Dyers and Colourists, 13 (8), 158–160. doi: https://doi.org/10.1111/j.1478-4408.1897.tb00121.x
  55. Sasaki, M., Takahashi, K. (2021). Complete Assignment of the 1H and 13C NMR Spectra of Carthamin Potassium Salt Isolated from Carthamus tinctorius L. Molecules, 26 (16), 4953. doi: https://doi.org/10.3390/molecules26164953
  56. Takahashi, Y., Miyasaka, N., Tasaka, S., Miura, I., Urano, S., Ikura, M. et. al. (1982). Constitution of two coloring matters in the flower petals of L. Tetrahedron Letters, 23 (49), 5163–5166. doi: https://doi.org/10.1016/s0040-4039(00)85786-x
  57. Golkar, P. (2018). Inheritance of carthamin and carthamidin in safflower (Carthamus tinctorius L.). Journal of Genetics, 97 (1), 331–336. doi: https://doi.org/10.1007/s12041-018-0909-9
  58. Dehariya, R., Dixit, A. K. (2015). A Review on Potential Pharmacological Uses of Carthamus tinctorius L. World Journal of Pharmaceutical Sciences, 3 (8), 1741–1746. Available at: https://wjpsonline.com/index.php/wjps/article/view/potential-pharmacological-uses-carthamus-tinctorius/1086
  59. Dehariya, R., Chandrakar, J., Dubey, S., Ojha, K., Dixit, A. K. (2020). Scavenging and metal chelating potential of Carthamus tinctorius L. extracts. Current Botany, 11, 43–50. doi: https://doi.org/10.25081/cb.2020.v11.6009
  60. Khan, M., Hanif, M. A., Ayub, M. A., Jilani, M. I., Shahid Chatha, S. A. (2020). Saffron. Medicinal Plants of South Asia, 587–600. doi: https://doi.org/10.1016/b978-0-08-102659-5.00043-4
  61. Heydari, M., zare, M., Badie, M. R., Watson, R. R., Talebnejad, M. R., Afarid, M. (2022). Crocin as a vision supplement. Clinical and Experimental Optometry, 1–8. doi: https://doi.org/10.1080/08164622.2022.2039554
  62. Siddiqui, S. A., Ali Redha, A., Snoeck, E. R., Singh, S., Simal-Gandara, J., Ibrahim, S. A., Jafari, S. M. (2022). Anti-Depressant Properties of Crocin Molecules in Saffron. Molecules, 27 (7), 2076. doi: https://doi.org/10.3390/molecules27072076
  63. Hatziagapiou, K., Nikola, O., Marka, S., Koniari, E., Kakouri, E., Zografaki, M.-E. et. al. (2022). An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants, 11 (6), 1074. doi: https://doi.org/10.3390/antiox11061074
  64. Kovalenko, V., Kotok, V. (2020). Determination of the applicability of Zn­Al layered double hydroxide, intercalated by food dye Orange Yellow S, as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (107)), 81–89. doi: https://doi.org/10.15587/1729-4061.2020.214847
  65. Kovalenko, V., Kotok, V. (2021). The determination of synthesis conditions and color properties of pigments based on layered double hydroxides with Co as a guest cation. Eastern-European Journal of Enterprise Technologies, 6 (6 (114)), 32–38. doi: https://doi.org/10.15587/1729-4061.2021.247160
  66. Kovalenko, V., Borysenko, A., Kotok, V., Nafeev, R., Verbitskiy, V., Melnyk, O. (2022). Determination of the dependence of the structure of Zn-Al layered double hydroxides, as a matrix for functional anions intercalation, on synthesis conditions. Eastern-European Journal of Enterprise Technologies, 1 (12 (115)), 12–20. doi: https://doi.org/10.15587/1729-4061.2022.252738
  67. Kovalenko, V., Borysenko, A., Kotok, V., Nafeev, R., Verbitskiy, V., Melnyk, O. (2022). Determination of technological parameters of Zn-Al layered double hydroxides, as a matrix for functional anions intercalation, under different synthesis conditions. Eastern-European Journal of Enterprise Technologies, 2 (6 (116)), 25–32. doi: https://doi.org/10.15587/1729-4061.2022.254496

##submission.downloads##

Опубліковано

2022-06-30

Як цитувати

Коваленко, В. Л., Коток, В. А., Борисенко, А. Ю., Допіра, А. Ю., Резванцева, А. О., Нафєєв, Р. К., Вербицький, В. В., & Cухомлин Д. А. (2022). Дослідження характеристик Zn-Al подвійно-шарових гідроксидів, інтеркальованих природними барвникати зі спецій, як косметичних пігментів. Eastern-European Journal of Enterprise Technologies, 3(12 (117), 52–59. https://doi.org/10.15587/1729-4061.2022.260170

Номер

Розділ

Матеріалознавство