Simulation of a ship’s roll under different loading conditions

Authors

  • Вадим Владимирович Мирошников Volodymyr Dahl East-Ukrainian National University Molodizhny bl., 20-а, Lugansk, Ukraine, 91034, Ukraine https://orcid.org/0000-0003-4066-0989
  • Владимир Борисович Нестеренко Kherson state maritime academy 20, Ushakov ave., Kherson, Ukraine, 73000, Ukraine https://orcid.org/0000-0002-9574-6512
  • Инна Петровна Завальнюк Kherson State Agricultural University 23, Rosa Luxemburg str., Kherson, Ukraine, 73006, Ukraine https://orcid.org/0000-0001-7691-1271
  • Ольга Петровна Завальнюк Kherson state maritime academy 20, Ushakov ave., Kherson, Ukraine, 73000, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.26197

Keywords:

metacentric height, oscillation period, ship loading option, monitoring device

Abstract

Despite the modern development of ship's technical measurement and automation equipment, new ships are equipped with the problem of real-time stability control for long service life merchant ships is relevant today.

Simulation of a ship's roll under different loading conditions, the results of which demonstrate the possibility of creating a device that allows real-time control of the ship stability by determining the metacentric height by the measured roll period was performed in the paper. It was found that the metacentric height is an important indicator of ship stability, which needs continuous monitoring in order to ensure the navigation safety. It was shown that the automatic determination of metacentric height requires a device, simple in design, not containing mechanical parts, excluding the human factor, as well as improving the measurement accuracy and skipper's decision-making speed.

Monitoring of the roll is proposed to carry out by the value of the change in the magnetic field intensity vector with the help of magnetic methods of non-destructive testing using magneto-modulation converters - ferroprobes.

Author Biographies

Вадим Владимирович Мирошников, Volodymyr Dahl East-Ukrainian National University Molodizhny bl., 20-а, Lugansk, Ukraine, 91034

Professor

Department of instrumentation

Владимир Борисович Нестеренко, Kherson state maritime academy 20, Ushakov ave., Kherson, Ukraine, 73000

Senior lecturer

Department of Ship Handling and Safety of Life at Sea

Инна Петровна Завальнюк, Kherson State Agricultural University 23, Rosa Luxemburg str., Kherson, Ukraine, 73006

PhD in technical sciences, assistant

Department of technology of processing and storage of agricultural products

Ольга Петровна Завальнюк, Kherson state maritime academy 20, Ushakov ave., Kherson, Ukraine, 73000

Senior lecturer

Department of operation of marine electrical equipment and automation

References

  1. Rules for the Classification and Construction of Sea-Going Ships. ND N 2-020101-064. Vol. I. Part IV. «Stability» (2012). St. Petersburg: Classification society Russian Maritime Register of Shipping, 530.
  2. The official website of the Nippon Kaiji Kyokai (Class NK). The stability requirements. Available at: http:// classnk.or.jp.
  3. Code on Intact Stability for All Types of Ships Covered by IMO Instruments (Resolution A. 749 (18)) (2008). London: IMO, 314.
  4. The International Convention for Safe Containers (2012). London: IMO, 234.
  5. Rawson, K., Tupper, E. (2001). The ship girder. Basic Ship Theory, 177–236. doi:10.1016/b978-075065398-5/50009-1
  6. The official website of the International marine organization. The intact stability. Available at: http://www.imo.org.
  7. Nechaev, Yu. I., Vasileva, E. Yu. (1996). A method of control of the ship’s stability and speed. Moscow: Official Bulletin «Inventions. Utility Models», 10, 5.
  8. Boukhanovsky, A. V., Ivanov, S. V., Nechayev, Yu. I. (2012). A method of control of the ship’s stability on collapsing excitement. Moscow: Official Bulletin «Inventions. Utility Models», 19, 4.
  9. Alexandrov, V. L., Matlah, A. P., Nechaev, Yu. I., Polyakov, V. I., Rostovtsev, D. M. (2000). A method of control of the ship seaworthy. Moscow: Official Bulletin «Inventions. Utility Models», 11, 5.
  10. Khodorkovsky, Y. I., Anuchin, O. N., Binder, Y. I., Gusinsky, V. Z., Yemelyantsev, G. I. (1996). A measuring instrument of the ship’s actual stability. Moscow: Official Bulletin «Inventions. Utility Models», 10, 5.
  11. Koravikovsky, Yu. P., Zhukov, Yu. N., Chernyavets, V. V., Rumyantsev, Yu. V., Adamov, N. O., Chernyavets, A. V., Anosov, V. S., Zhiltsov, N. N. (2012). A method of control of the ship seaworthy and device for its realization. Moscow: Official Bulletin «Inventions. Utility Models», 33, 6.
  12. Ferreiro García, R., Fernández, A., Cándido, A. (2000). Contribution to real time stability monitoring in waves based in FFT algorithm. Universidad de Cádiz, Servicio de Publicaciones, 2, 11–18.
  13. The official website of company «Hoppe Marine». Stability Test System. Available at: http:// hoppe-marine.com.
  14. Barrass, C. B., Derrett, D. R. (2012). Transverse Statical Stability. Ship Stability for Masters and Mates, 15–22. doi:10.1016/b978-0-08-097093-6.00002-5
  15. Mégel, J., Kliava, J. (2010). Metacenter and ship stability. Am. J. Phys., 78 (7), 738. doi:10.1119/1.3285975
  16. Babicz, J. (2011). Ship stability in practice. Gdańsk: Baobab Naval Consultancy, 202.
  17. Sizov, V. G. (2003). Theory of the ship. Odessa: FENIKS, 284.
  18. Van Dokkum, K., Ten Katen, H., Koomen, K., Pinkster, J. (2013). Ship stability. Enkhuizen: DOKMAR, 343.
  19. Klyuyev, V. V. (2005). Nondestructive testing and diagnostics: handbook. M.: Mechanical Engineering, 656.
  20. Klyuev, V. V. (2010). Nondestructive Testing and Diagnostics. V. 1. Magnetic Testing. Eddy-current Testing. X-ray Testing: handbook. M.: Publishing house «SPEKTR», 1006.
  21. Gorbash, V. G., Delendick, M. N., Pavlenko, P. N. (2011). Nondestructive Testing in Industry. Magnetic Testing. Nondestructive testing and diagnostics, 2, 48–63.
  22. Zavalniuk, O. P., Miroschnikov, V. V. (2012). Magnetic control of ship hulls during cargo and ballast operations. Visnik of the Volodymyr Dahl East Ukrainian National University, 18 (189), 76–82.
  23. The official website of the Institute Dr. Foerster. Metal detection & Magnetics. Available at: http:// foerstergroup.com.
  24. Forslund, A. (2006). Designing a Miniaturized Fluxgate Magnetometer. Stockholm: Royal Institute of Technology, 81.
  25. Kabata, W., Vitorello, I. (2011). Technical procedures to select basic parameters of a fluxgate magnetometer. Revista brasileira de geofisica, 29(3), 455–462.
  26. Miroschnikov, V. V., Kostin S. V., Karmanov, N. I., Martynenko N. V. (2012). The flux gate’s resonance mode of operation. Visnik of the National Technical University «KhPI». Collected papers. Series: Power and transforming technique, 40, 35–46.

Published

2014-07-23

How to Cite

Мирошников, В. В., Нестеренко, В. Б., Завальнюк, И. П., & Завальнюк, О. П. (2014). Simulation of a ship’s roll under different loading conditions. Eastern-European Journal of Enterprise Technologies, 4(2(70), 49–53. https://doi.org/10.15587/1729-4061.2014.26197