Synthesis of high-temperature superconducting ceramics in the Bi(Pb)-Sr-Ca-Cu-O system based on amorphous precursors

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.262452

Keywords:

superconductivity, microstructure, elemental composition, ceramics, morphology, diffractogram, amorphous phase

Abstract

The paper presents the results of the synthesis of bismuth superconducting ceramics with compositions Bi1.6Pb0.4Sr2Can-1CunOy (n=2, 3, 5) based on amorphous ceramics obtained by ultrafast melt quenching. In order to increase the rate of formation of superconducting compounds, effective devices have been developed for melting and hardening melts under the action of IR radiation. The sample holder was made of platinum. Melting and hardening were carried out in a continuous mode in an oxidizing environment in a flowing air atmosphere. The study of the elemental composition of the precursor samples established a slight deviation towards a decrease in the cationic composition of the precursors (Bi, Pb and Ca), relative to the stoichiometric composition. An increase in oxygen content by 12–15 % was also found. Synthesis of superconducting compounds was carried out in the temperature range of 843–850 °C, depending on the composition. The study found that in the sample Bi1.6Pb0.4Sr2Ca4Cu5Oy (2245) the superconducting high-temperature phase 2223 crystallizes. It was found that the formation of the superconducting phase 2223 in the Bi1.6Pb0.4Sr2Ca4Cu5Oy composition occurs in a lower and wider temperature range (843–848 °C) compared to the Bi1.6Pb0.4Sr2Ca2Cu3Oy (2223) composition. The complete formation of the superconducting high-temperature phase 2223 in a sample with the nominal composition Bi1.6Pb0.4Sr2Ca2Cu3Oy (2223) was carried out in a narrow temperature range of 849–850 °C, in a strict temperature regime with the participation of the liquid phase. An increase in the rate of formation of the superconducting compound 2223 in both studied compositions by 1.5–2.5 times was established, compared with the solid-phase method and other melt methods

Supporting Agency

  • The work was supported by the grant of the Ministry of Education and Science of the Republic of Kazakhstan AP09260251.

Author Biographies

Daniyar Uskenbaev, S. Seifullin Kazakh Agro Technical University

PhD, Associate Professor

Department of Radio Engineering, Electronics and Telecommunications

Kairatbek Zhetpisbayev, S. Seifullin Kazakh Agro Technical University

PhD

Department of Radio Engineering, Electronics and Telecommunications

Adolf Nogai, S. Seifullin Kazakh Agro Technical University

Doctor of Physical and Mathematical Sciences, Professor

Department of Radio Engineering, Electronics and Telecommunications

Renat Beissenov, Kazakh-British Technical University

PhD

Ainur Zhetpisbayeva, S. Seifullin Kazakh Agro Technical University

PhD

Department of Radio Engineering, Electronics and Telecommunications

Kymbat Baigisova, International Information Technologies University (IITU)

PhD

Department of Radio Engineering, Electronics and Telecommunications

Yerkebulan Salmenov, S. Seifullin Kazakh Agro Technical University

Master of Engineering

Department of Radio Engineering, Electronics and Telecommunications

Artur Nogai, S. Seifullin Kazakh Agro Technical University

PhD

Department of Power Supply

Serua Tursyntay, Satbayev University

Master

Department of Materials Science, Nanotechnology and Engineering Physics

References

  1. Yadav, S., Upadhyay, P., Awadhiya, B., Kondekar, P. N. (2022). Ferroelectric Negative-Capacitance-Assisted Phase-Transition Field-Effect Transistor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69 (2), 863–869. doi: https://doi.org/10.1109/tuffc.2021.3130194
  2. Nogai, A. S., Nogai, A. A., Stefanovich, S. Y., Solikhodzha, Z. M., Uskenbaev, D. E. (2020). Dipole Ordering and the Ionic Conductivity in Na3Fe2(PO4)3-Type NASICON-Like Structures. Physics of the Solid State, 62 (8), 1370–1379. doi: https://doi.org/10.1134/s1063783420080259
  3. Deyneko, N., Zhuravel, A., Mikhailova, L., Naden, E., Onyshchenko, A., Savchenko, A. et. al. (2020). Devising a technique to improve the efficiency of CdS/CdTe/Cu/Au solar cells intended for use as a backup power source for the systems of safety and control of objects. Eastern-European Journal of Enterprise Technologies, 6 (5 (108)), 21–27. doi: https://doi.org/10.15587/1729-4061.2020.220489
  4. Gulamova, D. D., Uskenbaev, D. E., Chigvinadze, D. G., Magradze, O. V. (2008). Crystallization and synthesis of HTSC of compositions 2234, 2245 in the Bi-Pb-Sr-Ca-Cu-O system based on amorphous precursors obtained by solar radiation hardening. Applied Solar Energy, 44 (1), 42–45. doi: https://doi.org/10.3103/s0003701x08010131
  5. Kuznetsov, S. B. (1995). Combined system of levitation, propulsion and guidance for Maglev vehicles using high-temperature superconducting magnetic potential well. IEEE Transactions on Appiled Superconductivity, 5 (2), 614–617. doi: https://doi.org/10.1109/77.402625
  6. Sato, K., Hayashi, K., Ohmatsu, K., Fujikami, J., Saga, N., Shibata, T. et. al. (1997). HTS large scale application using BSCCO conductor. IEEE Transactions on Appiled Superconductivity, 7 (2), 345–350. doi: https://doi.org/10.1109/77.614500
  7. Larbalestier, D., Gurevich, A., Feldmann, D. M., Polyanskii, A. (2001). High-Tc superconducting materials for electric power applications. Nature, 414 (6861), 368–377. doi: https://doi.org/10.1038/35104654
  8. Keene, M. N., Goodyear, S. W., Satchell, J. S., Edwards, J. A., Chew, N. G., Humphreys, R. G. (1993). Thin film HTc SQUID construction and characterisation. IEEE Transactions on Applied Superconductivity, 3 (1), 2430–2433. doi: https://doi.org/10.1109/77.233946
  9. An, D. Y., Yuan, J., Kinev, N., Li, M. Y., Huang, Y., Ji, M. et. al. (2013). Terahertz emission and detection both based on high-Tc superconductors: Towards an integrated receiver. Applied Physics Letters, 102 (9), 092601. doi: https://doi.org/10.1063/1.4794072
  10. Fyk, O., Kucher, D., Kucher, L., Gonchar, R., Antonetsʹ, V., Fyk, M., Besedin, Y. (2018). Analysis of the technology to manufacture a high-temperature microstrip superconductive device for the electromagnetic protection of receivers. Eastern-European Journal of Enterprise Technologies, 5 (12 (95)), 38–47. doi: https://doi.org/10.15587/1729-4061.2018.144125
  11. Schulz, R. R., Chesca, B., Goetz, B., Schneider, C. W., Schmehl, A., Bielefeldt, H. et. al. (2000). Design and realization of an all d-wave dc π-superconducting quantum interference device. Applied Physics Letters, 76 (7), 912–914. doi: https://doi.org/10.1063/1.125627
  12. Devoret, M. H., Martinis, J. M. (2005). Implementing Qubits with Superconducting Integrated Circuits. Experimental Aspects of Quantum Computing, 163–203. doi: https://doi.org/10.1007/0-387-27732-3_12
  13. Jurbergs, D. C., Haupt, S. G., Lo, R.-K., Jones, C. T., Zhao, J., Mcdevitt, J. T. (1995). Electrochemical and optical devices based on molecule/high-Tc superconductor structures. Electrochimica Acta, 40 (10), 1319–1329. doi: https://doi.org/10.1016/0013-4686(95)00067-o
  14. Xiong, W., Kula, W., Sobolewski, R. (1994). Fabrication of High-T c Superconducting Electronic Devices Using the Laser-Writing Technique. Advances in Cryogenic Engineering Materials, 385–391. doi: https://doi.org/10.1007/978-1-4757-9053-5_50
  15. Palka, R. (2005). Modelling of high temperature superconductors and their practical applications. International Compumag Society Newsletter, 12 (3), 3–12. Available at: http://www.compumag.org/jsite/images/stories/newsletter/ICS-05-12-3-Palka.pdf
  16. Hull, J. R., Strasik, M. (2010). Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators. Superconductor Science and Technology, 23 (12), 124005. doi: https://doi.org/10.1088/0953-2048/23/12/124005
  17. Eab, C.-H., Tang, I.-M. (1989). Upper limit for the Tc's of the “new” high Tc superconductors. Physics Letters A, 134 (4), 253–256. doi: https://doi.org/10.1016/0375-9601(89)90405-2
  18. Tret'yakov, Yu. D., Kazin, P. E. (1993). Novye problemy i resheniya v materialovedenii keramicheskikh sverkhprovodyaschikh kupratov. Neorganicheskie matererialy, 29 (12), 1571–1581.
  19. Chatterjee, S., Bhattacharya, S., Chaudhuri, B. K. (1998). Structural and transport properties of (Bi,Pb)4Sr3Ca3Cu4−mFemOx (m=0–0.06) glasses: Precursors for high Tc superconductors. The Journal of Chemical Physics, 108 (7), 2954–2961. doi: https://doi.org/10.1063/1.475682
  20. Aruchamy, A., Kim, S. J., Birnie, D. P., Uhlmann, D. R. (1993). Glass microstructure and initial crystallization of Pb0.32Bi1.68Sr1.75Ca2Cu3Ox. Journal of Non-Crystalline Solids, 160 (1-2), 60–67. doi: https://doi.org/10.1016/0022-3093(93)90284-5
  21. Coskun, A., Ozcelik, B., Kiymac, K. (2001). Physical Properties of Melt-Cast Annealed Bi1.6Pb0.4Sr2Ca3Cu4O12 Compound. Turkish Journal of Physics, 25, 473–479. Available at: https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=1938&context=physics
  22. Gulamova, D. D., Bobokulov, S. K., Turdiev, Z. S., Bakhronov, K. N. (2018). High-Temperature Superconductors of the Bi1.7Pb0.3Sr2Ca(n– 1)CunOy (n = 2–20) Series Synthesized under the Influence of Concentrated Solar Energy. Applied Solar Energy, 54 (5), 358–360. doi: https://doi.org/10.3103/s0003701x18050067
  23. Gulamova, D. D., Uskenbaev, D. E., Fantozzi, G., Chigvinadze, J. G., Magradze, O. V. (2009). Phase composition and properties of superconducting ceramics based on Bi1.7Pb0.3Sr2Ca2Cu3O y precursors fabricated by melt quenching in a solar furnace. Technical Physics, 54 (6), 860–864. doi: https://doi.org/10.1134/s1063784209060140
  24. Gulamova, D. D., Uskenbaev, D. E. (2006). Effect of substrate composition and crystal structure on the BSCCO texture with the 2223 composition obtained under the action of solar radiation. Applied Solar Energy, 42 (4), 40–42.
  25. Uskenbayev, D. E., Nogay, A. S., Aynakulov, E. B. (2016). Properties of Bismuth-Based Superconductors Precursors obtained under the influence of the Radiant Flux. IOP Conference Series: Materials Science and Engineering, 110, 012030. doi: https://doi.org/10.1088/1757-899x/110/1/012030
  26. Maeda, H., Chen, W. P., Inaba, T., Sato, M., Watanabe, K., Motokawa, M. (2001). Texture development in Bi-based superconductors grown in high magnetic fields and its effect on transformation of Bi(Pb)2212 to Bi(Pb)2223. Physica C: Superconductivity, 354 (1-4), 338–341. doi: https://doi.org/10.1016/s0921-4534(01)00050-8
  27. Murashov, V. A., Frolov, A. M., Lebedev, A. V. (1988). Kationnoe zameschenie v vismutovykh sverkhprovodyaschikh kupritakh. I Vsesoyuz. sovesch. po VTSP. Tez. dokl. Vol. 3. Kharkiv, 116–118.
  28. Abe, Y. (1997). Superconducting Glass-Ceramics in Bi-Sr-Ca-Cu-O. World Scientific. doi: https://doi.org/10.1142/3537

Downloads

Published

2022-08-27

How to Cite

Uskenbaev, D., Zhetpisbayev, K., Nogai, A., Beissenov, R., Zhetpisbayeva, A., Baigisova, K., Salmenov, Y., Nogai, A., & Tursyntay, S. (2022). Synthesis of high-temperature superconducting ceramics in the Bi(Pb)-Sr-Ca-Cu-O system based on amorphous precursors. Eastern-European Journal of Enterprise Technologies, 4(12 (118), 29–37. https://doi.org/10.15587/1729-4061.2022.262452

Issue

Section

Materials Science