Development of a comprehensive methodology for assessing information and analytical support in decision support systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.263156

Keywords:

information and analytical support, fuzzy cognitive models, computational complexity, system of indicators, fuzzy models

Abstract

The object of the study is decision support systems. A methodology for evaluating information and analytical support in decision support systems was developed. The method consists of the main stages: assessment of the type of uncertainty about the state of the analysis object, calculation of criteria and determination of development options, determination of system reaction time, formation of the initial scenario. The next steps are establishing the target state of the object, analyzing options for influencing the analysis object, obtaining intermediate target states of the analysis object, and determining options for the development of the analysis object.

The method was developed because of the need to process more information and has a moderate computational complexity.

It was found that the proposed method has a computational complexity of 10–15 % lower compared to the methods for evaluating the effectiveness of management decisions. This method will allow assessing the state of information and analytical support and determining effective measures to increase efficiency. The method will allow analyzing possible options for the development of the assessment object in each development phase and the moments in time when it is necessary to carry out structural changes that ensure the transition to the next phase. In this case, subjective factors of choice are taken into account while searching for solutions, which are formalized in the form of weights for the components of the integral efficiency criterion. The maximization of the criteria, calculated taking into account the preferences, makes it possible to determine the best option for the development of the assessment object. The method allows increasing the speed of assessment of the state of information and analytical support, reducing the use of computing resources of decision support systems, developing measures aimed at increasing the efficiency of information and analytical support

Author Biographies

Qasim Abbood Mahdi, Al-Taff University College

PhD, Head of Department

Department of Computer Technologies Engineering

Basem Abdullah Mohammed, Bilad Alrafidain University College

PhD, Lecturer

Department of Aeronautical Techniques Engineering

Olha Salnikova, General Directorate of Military Cooperation Ukrainian Armed Forces

Doctor of Public Administration, Senior Researcher, Deputy Chief

Oleksandr Skliar, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

Adjunct

Department of Land Forces

Command and Staff Institute of Troops (Forces) Employment

Serhii Skorodid, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

PhD, Professor

Department of Land Forces

Command and Staff Institute of Troops (Forces) Employment

Vasil Panasiuk, Hetman Petro Sahaidachnyi National Army Academy

PhD, Associate Professor

Department of Tactical Special Disciplines

Andrii Veretnov, Central Scientific Research Institute of Armament and Military Equipment of the Armed Forces of Ukraine

PhD, Leading Researcher

Research Department

Oleh Shknai, Military Unit A1906

PhD, Leading Researcher

Research Department

Yevgen Prokopenko, The National Defence University of Ukraine named after Ivan Cherniakhovskyi

PhD, Head

Research Laboratory for Strategic Communications Development Problems

Educational and Scientific Center for Strategic Communications in the Field of National Security and Defense

Sergij Pyvovarchuk, Military Institute of Telecommunications and Information Technologies named after Heroes of Kruty

Head of Department

Department of Combat use of Communication Units

References

  1. Rodionov, M. A. (2010). Informatsionno-analiticheskoe obespechenie upravlencheskikh resheniy. Moscow: MIGSU, 400.
  2. Roy, B. (1996). Multicriteria methodology for decision aiding. Springer, 293. doi: https://doi.org/10.1007/978-1-4757-2500-1
  3. Saaty, T. L. (1980). The Analytic Hierarchy Process, Planning, Priority Setting, Resource Allocation. McGraw-Hill, 287.
  4. Bellman, R. E., Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17 (4), 141. doi: https://doi.org/10.1287/mnsc.17.4.b141
  5. Mamdani, E. H., Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7 (1), 1–13. doi: https://doi.org/10.1016/s0020-7373(75)80002-2
  6. Sugeno, M. (1985). Industrial applications of fuzzy control. Elsevier Science Pub. Co., 269.
  7. Fuller, R. (1995). Neural Fuzzy Systems. Abo Akademi University, 348. Available at: https://uni-obuda.hu/users/fuller.robert/ln1.pdf
  8. Onykiy, B., Artamonov, A., Ananieva, A., Tretyakov, E., Pronicheva, L., Ionkina, K., Suslina, A. (2016). Agent Technologies for Polythematic Organizations Information-Analytical Support. Procedia Computer Science, 88, 336–340. doi: https://doi.org/10.1016/j.procs.2016.07.445
  9. Manea, E., Di Carlo, D., Depellegrin, D., Agardy, T., Gissi, E. (2019). Multidimensional assessment of supporting ecosystem services for marine spatial planning of the Adriatic Sea. Ecological Indicators, 101, 821–837. doi: https://doi.org/10.1016/j.ecolind.2018.12.017
  10. Xing, W., Goggins, S., Introne, J. (2018). Quantifying the Effect of Informational Support on Membership Retention in Online Communities through Large-Scale Data Analytics. Computers in Human Behavior, 86, 227–234. doi: https://doi.org/10.1016/j.chb.2018.04.042
  11. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
  12. Çavdar, A. B., Ferhatosmanoğlu, N. (2018). Airline customer lifetime value estimation using data analytics supported by social network information. Journal of Air Transport Management, 67, 19–33. doi: https://doi.org/10.1016/j.jairtraman.2017.10.007
  13. Ballester-Caudet, A., Campíns-Falcó, P., Pérez, B., Sancho, R., Lorente, M., Sastre, G., González, C. (2019). A new tool for evaluating and/or selecting analytical methods: Summarizing the information in a hexagon. TrAC Trends in Analytical Chemistry, 118, 538–547. doi: https://doi.org/10.1016/j.trac.2019.06.015
  14. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  15. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  16. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  17. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  18. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
  19. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
  20. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  21. Rybak, V. A., Ahmad, S. (2016). Analysis and comparison of existing decision support technology. Sistemniy analiz i prikladnaya informatika, 3, 12–18.
  22. Rodionov, M. A. (2014). Problems of information and analytical support of contemporary strategic management. Nauchniy vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta grazhdanskoy aviatsii, 202, 65–69.
  23. Bednář, Z. (2018). Information Support of Human Resources Management in Sector of Defense. Vojenské rozhledy, 27 (1), 45–68.
  24. Palchuk, V. (2017). Suchasni osoblyvosti rozvytku metodiv kontent-monitorynhu i kontent-analizu informatsiynykh potokiv. Naukovi pratsi Natsionalnoi biblioteky Ukrainy imeni V. I. Vernadskoho, 48, 506–526.
  25. Mir, S. A., Padma, T. (2016). Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP). Spanish Journal of Agricultural Research, 14 (4), e0909. doi: https://doi.org/10.5424/sjar/2016144-8699
  26. Kljushin, V. V. (2014). Theoretical and methodological basis for the formation and evaluation of the level of the economic system's strategic economic potential. Modern Management Technology, 12 (48). Available at: https://sovman.ru/article/4805/
  27. Bogomolova, I. P., Omel'chenko, O. M. (2014). Analysis of influence factors of economic efficiency on the economy of the integrated structures. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernyh tehnologiy, 3, 157–162.
  28. Sherafat, A., Yavari, K., Davoodi, S. M. R. (2014). Evaluation of the Strategy Management Implementation in Project-Oriented Service Organizations. Acta Universitatis Danubius, 10 (1), 16–25.
  29. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies. Vol. 3. No. 2 (105). 2020. pp. 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  30. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
  31. Alieinykov, I. V. (2018). Analiz faktoriv, shcho vplyvaiut na operatyvnist protsesu zboru, obrobky i peredachi informatsiyi pro protyvnyka pid chas pidhotovky ta vedennia oboronnoi operatsiyi operatyvnoho uhrupuvannia viysk. XVIII naukovo-tekhnichnoi konferentsiyi “Stvorennia ta modernizatsiya ozbroiennia i viyskovoi tekhniky v suchasnykh umovakh”. Chernihiv, 38.
  32. Alieinykov, I. V., Zhyvotovskyi, R. M. (2018). Udoskonalennia informatsiyno-analitychnoho zabezpechennia za rakhunok formuvannia intehrovanoi informatsiynoi systemy upravlinnia viyskamy. Zbirnyk materialiv VI mizhnarodnoi naukovo-praktychnoi konferentsiyi “Problemy koordynatsiyi voienno-tekhnichnoi ta oboronno-promyslovoi polityky v Ukraini. Perspektyvy rozvytku ozbroiennia ta viiskovoi tekhniky”. Kyiv, 165–166.
  33. Kalantaievska, S., Pievtsov, H., Kuvshynov, O., Shyshatskyi, A., Yarosh, S., Gatsenko, S. et. al. (2018). Method of integral estimation of channel state in the multiantenna radio communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (95)), 60–76. doi: https://doi.org/10.15587/1729-4061.2018.144085
  34. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  35. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et. al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  36. Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Y., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
  37. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  38. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et. al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718

Downloads

Published

2022-08-31

How to Cite

Mahdi, Q. A., Mohammed, B. A., Salnikova, O., Skliar, O., Skorodid, S., Panasiuk, V., Veretnov, A., Shknai, O., Prokopenko, Y., & Pyvovarchuk, S. (2022). Development of a comprehensive methodology for assessing information and analytical support in decision support systems . Eastern-European Journal of Enterprise Technologies, 4(4 (118), 19–26. https://doi.org/10.15587/1729-4061.2022.263156

Issue

Section

Mathematics and Cybernetics - applied aspects