Development of a comprehensive methodology for assessing information and analytical support in decision support systems
DOI:
https://doi.org/10.15587/1729-4061.2022.263156Keywords:
information and analytical support, fuzzy cognitive models, computational complexity, system of indicators, fuzzy modelsAbstract
The object of the study is decision support systems. A methodology for evaluating information and analytical support in decision support systems was developed. The method consists of the main stages: assessment of the type of uncertainty about the state of the analysis object, calculation of criteria and determination of development options, determination of system reaction time, formation of the initial scenario. The next steps are establishing the target state of the object, analyzing options for influencing the analysis object, obtaining intermediate target states of the analysis object, and determining options for the development of the analysis object.
The method was developed because of the need to process more information and has a moderate computational complexity.
It was found that the proposed method has a computational complexity of 10–15 % lower compared to the methods for evaluating the effectiveness of management decisions. This method will allow assessing the state of information and analytical support and determining effective measures to increase efficiency. The method will allow analyzing possible options for the development of the assessment object in each development phase and the moments in time when it is necessary to carry out structural changes that ensure the transition to the next phase. In this case, subjective factors of choice are taken into account while searching for solutions, which are formalized in the form of weights for the components of the integral efficiency criterion. The maximization of the criteria, calculated taking into account the preferences, makes it possible to determine the best option for the development of the assessment object. The method allows increasing the speed of assessment of the state of information and analytical support, reducing the use of computing resources of decision support systems, developing measures aimed at increasing the efficiency of information and analytical support
References
- Rodionov, M. A. (2010). Informatsionno-analiticheskoe obespechenie upravlencheskikh resheniy. Moscow: MIGSU, 400.
- Roy, B. (1996). Multicriteria methodology for decision aiding. Springer, 293. doi: https://doi.org/10.1007/978-1-4757-2500-1
- Saaty, T. L. (1980). The Analytic Hierarchy Process, Planning, Priority Setting, Resource Allocation. McGraw-Hill, 287.
- Bellman, R. E., Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17 (4), 141. doi: https://doi.org/10.1287/mnsc.17.4.b141
- Mamdani, E. H., Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7 (1), 1–13. doi: https://doi.org/10.1016/s0020-7373(75)80002-2
- Sugeno, M. (1985). Industrial applications of fuzzy control. Elsevier Science Pub. Co., 269.
- Fuller, R. (1995). Neural Fuzzy Systems. Abo Akademi University, 348. Available at: https://uni-obuda.hu/users/fuller.robert/ln1.pdf
- Onykiy, B., Artamonov, A., Ananieva, A., Tretyakov, E., Pronicheva, L., Ionkina, K., Suslina, A. (2016). Agent Technologies for Polythematic Organizations Information-Analytical Support. Procedia Computer Science, 88, 336–340. doi: https://doi.org/10.1016/j.procs.2016.07.445
- Manea, E., Di Carlo, D., Depellegrin, D., Agardy, T., Gissi, E. (2019). Multidimensional assessment of supporting ecosystem services for marine spatial planning of the Adriatic Sea. Ecological Indicators, 101, 821–837. doi: https://doi.org/10.1016/j.ecolind.2018.12.017
- Xing, W., Goggins, S., Introne, J. (2018). Quantifying the Effect of Informational Support on Membership Retention in Online Communities through Large-Scale Data Analytics. Computers in Human Behavior, 86, 227–234. doi: https://doi.org/10.1016/j.chb.2018.04.042
- Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
- Çavdar, A. B., Ferhatosmanoğlu, N. (2018). Airline customer lifetime value estimation using data analytics supported by social network information. Journal of Air Transport Management, 67, 19–33. doi: https://doi.org/10.1016/j.jairtraman.2017.10.007
- Ballester-Caudet, A., Campíns-Falcó, P., Pérez, B., Sancho, R., Lorente, M., Sastre, G., González, C. (2019). A new tool for evaluating and/or selecting analytical methods: Summarizing the information in a hexagon. TrAC Trends in Analytical Chemistry, 118, 538–547. doi: https://doi.org/10.1016/j.trac.2019.06.015
- Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
- Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
- Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
- Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
- Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
- Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
- Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
- Rybak, V. A., Ahmad, S. (2016). Analysis and comparison of existing decision support technology. Sistemniy analiz i prikladnaya informatika, 3, 12–18.
- Rodionov, M. A. (2014). Problems of information and analytical support of contemporary strategic management. Nauchniy vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta grazhdanskoy aviatsii, 202, 65–69.
- Bednář, Z. (2018). Information Support of Human Resources Management in Sector of Defense. Vojenské rozhledy, 27 (1), 45–68.
- Palchuk, V. (2017). Suchasni osoblyvosti rozvytku metodiv kontent-monitorynhu i kontent-analizu informatsiynykh potokiv. Naukovi pratsi Natsionalnoi biblioteky Ukrainy imeni V. I. Vernadskoho, 48, 506–526.
- Mir, S. A., Padma, T. (2016). Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP). Spanish Journal of Agricultural Research, 14 (4), e0909. doi: https://doi.org/10.5424/sjar/2016144-8699
- Kljushin, V. V. (2014). Theoretical and methodological basis for the formation and evaluation of the level of the economic system's strategic economic potential. Modern Management Technology, 12 (48). Available at: https://sovman.ru/article/4805/
- Bogomolova, I. P., Omel'chenko, O. M. (2014). Analysis of influence factors of economic efficiency on the economy of the integrated structures. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernyh tehnologiy, 3, 157–162.
- Sherafat, A., Yavari, K., Davoodi, S. M. R. (2014). Evaluation of the Strategy Management Implementation in Project-Oriented Service Organizations. Acta Universitatis Danubius, 10 (1), 16–25.
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et. al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies. Vol. 3. No. 2 (105). 2020. pp. 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
- Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
- Alieinykov, I. V. (2018). Analiz faktoriv, shcho vplyvaiut na operatyvnist protsesu zboru, obrobky i peredachi informatsiyi pro protyvnyka pid chas pidhotovky ta vedennia oboronnoi operatsiyi operatyvnoho uhrupuvannia viysk. XVIII naukovo-tekhnichnoi konferentsiyi “Stvorennia ta modernizatsiya ozbroiennia i viyskovoi tekhniky v suchasnykh umovakh”. Chernihiv, 38.
- Alieinykov, I. V., Zhyvotovskyi, R. M. (2018). Udoskonalennia informatsiyno-analitychnoho zabezpechennia za rakhunok formuvannia intehrovanoi informatsiynoi systemy upravlinnia viyskamy. Zbirnyk materialiv VI mizhnarodnoi naukovo-praktychnoi konferentsiyi “Problemy koordynatsiyi voienno-tekhnichnoi ta oboronno-promyslovoi polityky v Ukraini. Perspektyvy rozvytku ozbroiennia ta viiskovoi tekhniky”. Kyiv, 165–166.
- Kalantaievska, S., Pievtsov, H., Kuvshynov, O., Shyshatskyi, A., Yarosh, S., Gatsenko, S. et. al. (2018). Method of integral estimation of channel state in the multiantenna radio communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (95)), 60–76. doi: https://doi.org/10.15587/1729-4061.2018.144085
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
- Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et. al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
- Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Y., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
- Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
- Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et. al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Qasim Abbood Mahdi, Basem Abdullah Mohammed, Olha Salnikova, Oleksandr Skliar, Serhii Skorodid, Vasil Panasiuk, Andrii Veretnov, Oleh Shknai, Yevgen Prokopenko, Sergij Pyvovarchuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.