Identifying some regularities of radio frequency propagation of a radar system by analyzing different environmental effects
DOI:
https://doi.org/10.15587/1729-4061.2022.264093Keywords:
free space path loss (FSPL), propagation losses (PL), weather antenna attenuationAbstract
Free space path loss is a function of frequency and propagation distance and the RF signal propagates at light speed in all directions in free space. The performance evaluation of wireless and radar communication technologies is related to understanding the propagation environments. This work presents the modeling of several RF propagation properties that include atmospheric attenuation due to rain, free space path loss, gas, and fog, as well as multipath propagations caused by ground bounces. The methodology discusses the developed model according to the series of (ITU) International Telecommunication Union references to radio wave propagation. This work discusses the Free Space Path Losses (FSPL), and Propagation Losses (PL) due to the atmosphere, precipitation, snow, rain, clouds, fog, atmospheric lensing and absorption, and polarization mismatch. The work also discusses the vertical coverage diagram and radar propagation factor. The obtained results demonstrate that the PL increases with frequency and range, at a 90-degree roll angle, the attenuation approaches infinity, and as the altitude rises, the amount of attenuation caused by lensing decreases. The analysis of attenuation at 1 km vs. frequency variations, at roughly 60 GHz, indicated a high absorption owing to air gas. Lensing attenuations are also offered as secondary outputs for convenience, the wideband channels present higher performance crossways and a wide range of target height as expected. When the target height increases, the influence of multi-path fading approximately vanishes entirely due to the variation increasing in the spreading delay between the bounce and direct pathway signals. This will reduce the coherence sum between these two samples on receiving by the target
References
- Alotaibi, S. (2018). Improved Performance of Doppler Tolerant Radars Using Digital Code. Journal of Engineering and Applied Sciences, 1–6. https://doi.org/10.5455/jeas.2018050101
- Faruk, N., Abdulrasheed, I. Y., Surajudeen-Bakinde, N. T., Adetiba, E., Oloyede, A. A., Abdulkarim, A., Sowande, O., Ifijeh, A. H., Atayero, A. A. (2021). Large-scale radio propagation path loss measurements and predictions in the VHF and UHF bands. Heliyon, 7 (6), e07298. https://doi.org/10.1016/j.heliyon.2021.e07298
- Faruk, N., Popoola, S. I., Surajudeen-Bakinde, N. T., Oloyede, A. A., Abdulkarim, A., Olawoyin, L. A., Ali, M., Calafate, C. T., Atayero, A. A. (2019). Path Loss Predictions in the VHF and UHF Bands Within Urban Environments: Experimental Investigation of Empirical, Heuristics and Geospatial Models. IEEE Access, 7, 77293–77307. https://doi.org/10.1109/access.2019.2921411
- De Beelde, B., Plets, D., Desset, C., Tanghe, E., Bourdoux, A., Joseph, W. (2021). Material Characterization and Radio Channel Modeling at D-Band Frequencies. IEEE Access, 9, 153528–153539. https://doi.org/10.1109/access.2021.3127399
- Fono, V. A., Talbi, L., Safia, O. A., Nedil, M., Hettak, K. (2020). Deterministic Modeling of Indoor Stairwells Propagation Channel. IEEE Antennas and Wireless Propagation Letters, 19 (2), 327–331. https://doi.org/10.1109/lawp.2019.2961641
- Xing, Y., Rappaport, T. S., Ghosh, A. (2021). Millimeter Wave and Sub-THz Indoor Radio Propagation Channel Measurements, Models, and Comparisons in an Office Environment. IEEE Communications Letters, 25 (10), 3151–3155. https://doi.org/10.1109/lcomm.2021.3088264
- Vertatschitsch, L. E., Sahr, J. D., Colestock, P., Close, S. (2011). Meteoroid head echo polarization features studied by numerical electromagnetics modeling. Radio Science, 46 (6). Portico. https://doi.org/10.1029/2011rs004774
- Alslaimy, M., Smith, G. E. (2019). Cramér–Rao lower bound for ATSC signal‐based passive radar systems. Electronics Letters, 55 (8), 479–481. Portico. https://doi.org/10.1049/el.2019.0011
- Shijer, S. S., Sabry, A. H. (2021). Analysis of performance parameters for wireless network using switching multiple access control method. Eastern-European Journal of Enterprise Technologies, 4 (9 (112)), 6–14. https://doi.org/10.15587/1729-4061.2021.238457
- Al-Shoukry, S., M. Jawad, B. J., Musa, Z., Sabry, A. H. (2022). Development of predictive modeling and deep learning classification of taxi trip tolls. Eastern-European Journal of Enterprise Technologies, 3 (3 (117)), 6–12. https://doi.org/10.15587/1729-4061.2022.259242
- Hultell, J., Johansson, K. (2006). Performance Analysis of Non-Cosited Evolved 2G and 3G Multi-Access Systems. 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications. https://doi.org/10.1109/pimrc.2006.254249
- Aytekin, A., Gulbahar, B. (2020). Experimental Analysis of RF based Multi-plane-diffraction with Over-the-air Active Cellular Signal Measurements. 2020 28th Signal Processing and Communications Applications Conference (SIU). https://doi.org/10.1109/siu49456.2020.9302221
- Quanmin, W., Chuncai, W., Gang, G., Kedi, H. (2010). RF Effect Algorithms of Terrain Environment in Signal-Level Radar System Simulation. 2010 Second International Conference on Computer Modeling and Simulation. https://doi.org/10.1109/iccms.2010.96
- Kang, S., Oldenburg, D. W., Heagy, L. J. (2019). Detecting induced polarisation effects in time-domain data: a modelling study using stretched exponentials. Exploration Geophysics, 51 (1), 122–133. https://doi.org/10.1080/08123985.2019.1690393
- ITU-R P.838-3. Specific attenuation model for rain for use in prediction methods. Available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-3-200503-I!!PDF-E.pdf
- Armon, M., Marra, F., Enzel, Y., Rostkier‐Edelstein, D., Garfinkel, C. I., Adam, O., Dayan, U., Morin, E. (2021). Reduced Rainfall in Future Heavy Precipitation Events Related to Contracted Rain Area Despite Increased Rain Rate. Earth’s Future, 10 (1). Portico. https://doi.org/10.1029/2021ef002397
- ITU-R P.840-5. Attenuation due to clouds and fog. Available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.840-5-201202-S!!PDF-E.pdf
- ITU-R P.676-10. Attenuation by atmospheric gases. Available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-10-201309-S!!PDF-E.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ekhlas Kadhum Hamza, Sameir A. Aziez, Ahmed Hameed Reja, Ahmad H. Sabry
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.