Identification of the pulse axisymmetric load acting on a composite cylindrical shell, inhomogeneous in length, made of different materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.265356

Keywords:

cylindrical shell, nonstationary deformation, inverse problem, integral equation, Tikhonov regularization

Abstract

The problem of identifying the load acting on the elements of structures belongs to the class of inverse problems of the mechanics of a deformable solid, which are often incorrect. Solving such problems is associated with the instability of the calculation results, which requires the development of special methods for their research. This predetermines the relevance of this study.

The object of the study is a single-pass cylindrical shell consisting of two rigidly fastened butt-fastened sections made of different materials. Each of the shells is assumed to be elastic isotropic, having a cross-section of medium thickness. The equations of axisymmetric deformation of shells are used within the framework of Timoshenko hypotheses.

An approach to solving direct and inverse problems for such discretely heterogeneous objects is proposed, which implies the conditional separation of a discretely heterogeneous cylindrical shell along the length, followed by the addition of functions of fictitious loads. The main analytical relationships for building a system of integral Volterra equations are given, for which an analytic-numerical solution is derived.

The final ratios have been obtained, which make it possible to calculate the kinematic and force parameters of the study object in the process of non-stationary deformation. The inverse problem of identifying arbitrary loads acting on a shell that is heterogeneous in length is solved in a general form. An algorithm for the restoration of pulse loads has been developed, which is robust to errors in the initial data (about 5 %).

The material related to solving direct and inverse problems for shells that are discretely heterogeneous in length can significantly advance the methodology for identifying pulse loads acting on structural elements

Author Biographies

Alexey Voropay, Kharkiv National Automobile and Highway University

Doctor of Technical Sciences, Professor, Head of Department

Department of Machine Components and Theory of Machines and Mechanisms

Grygoriy Gnatenko, National Technical University “Kharkiv Polytechnic Institute”

PhD, Associate Professor

Department of the Lifting and Transporting Machines and Equipment

Pavlo Yehorov, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Machine Components and Theory of Machines and Mechanisms

Serhii Povaliaiev, Kharkiv National Automobile and Highway University

PhD, Associate Professor

Department of Machine Components and Theory of Machines and Mechanisms

Olena Naboka, National Technical University “Kharkiv Polytechnic Institute”

PhD, Associate Professor

Department of Higher Mathematics

References

  1. Vatul'yan, A. O., Solov'ev, A. N. (2008). Pryamye i obratnye zadachi dlya odnorodnykh i neodnorodnykh uprugikh i elektrouprugikh tel. Rostov-na-Donu, 176.
  2. Timoshenko, S. P., Voynovskiy-Kriger, S. (1966). Plastinki i obolochki. Moscow: Nauka, 635.
  3. Grigolyuk, E. I., Selezov, I. T. (1973). Mekhanika tverdykh deformiruemykh tel. T. 5. Neklassicheskie teorii kolebaniy sterzhney, plastin i obolochek. Moscow: VINITI, 272.
  4. Ramm, A. G. (2005). Inverse problems: mathematical and analytical techniques with applications to engineering. Springer, 442. doi: https://doi.org/10.1007/b100958
  5. Samarskiy, A. A., Vabischevich, P. N. (2004). CHislennye metody resheniya obratnykh zadach matematicheskoy fiziki. Moscow: Editorial URSS, 480.
  6. Tikhonov A. N., Arsenin V. Ya. (1986). Metody resheniya nekorrektnykh zadach. Moscow: Nauka, 288.
  7. Iakovlev, S., Santos, H. A. F. A., Williston, K., Murray, R., Mitchell, M. (2013). Non-stationary radiation by a cylindrical shell: Numerical modeling using the Reissner–Mindlin theory. Journal of Fluids and Structures, 36, 50–69. doi: https://doi.org/10.1016/j.jfluidstructs.2012.09.003
  8. Krivenko, O., Vorona, Y. (2018). Analysis of non-stationary reaction of elastic shell to impulse load. Strength of Materials and Theory of Structures, 101, 26–37. doi: https://doi.org/10.32347/2410-2547.2018.101.26-37
  9. Smetankina, N., Kravchenko, I., Merculov, V., Ivchenko, D., Malykhina, A. (2020). Modelling of Bird Strike on an Aircraft Glazing. Advances in Intelligent Systems and Computing, 289–297. doi: https://doi.org/10.1007/978-3-030-37618-5_25
  10. Smetankina, N., Merkulova, A., Merkulov, D., Postnyi, O. (2021). Dynamic Response of Laminate Composite Shells with Complex Shape Under Low-Velocity Impact. Integrated Computer Technologies in Mechanical Engineering - 2020, 267–276. doi: https://doi.org/10.1007/978-3-030-66717-7_22
  11. Smetankina, N. V., Merkulova, A. I., Postnyi, O. V., Merkulov, D. O., Misura, S. Yu. (2021). Optimal Design of Layered Cylindrical Shells with Minimum Weight Under Impulse Loading. 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek). doi: https://doi.org/10.1109/khpiweek53812.2021.9569982
  12. Lugovoi, P. Z., Sirenko, V. N., Skosarenko, Yu. V., Batutina, T. Ya. (2017). Dynamics of a Discretely Reinforced Cylindrical Shell Under a Local Impulsive Load. International Applied Mechanics, 53 (2), 173–180. doi: https://doi.org/10.1007/s10778-017-0803-9
  13. Lugovoi, P. Z., Meish, Yu. A. (2016). Nonstationary Deformation of Longitudinally and Transversely Reinforced Cylindrical Shells on an Elastic Foundation. International Applied Mechanics, 52 (1), 62–72. doi: https://doi.org/10.1007/s10778-016-0733-y
  14. Lugovoi, P. Z., Meish, V. F. (2017). Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey). International Applied Mechanics, 53 (5), 481–537. doi: https://doi.org/10.1007/s10778-017-0833-3
  15. Skosarenko, Yu. V. (2015). The Stress–Strain State of a Ribbed Cylindrical Shell Interacting with an Elastic Foundation Under Short-Term Loads. International Applied Mechanics, 51 (1), 92–101. doi: https://doi.org/10.1007/s10778-015-0675-9
  16. Davar, A., Azarafza, R., Fayez, M. S., Fallahi, S., Jam, J. E. (2021). Dynamic Response of a Grid-Stiffened Composite Cylindrical Shell Reinforced with Carbon Nanotubes to a Radial Impulse Load. Mechanics of Composite Materials, 57 (2), 181–204. doi: https://doi.org/10.1007/s11029-021-09944-3
  17. Wang, J.-P., Mao, Y.-J., Di, F., Lü, J., Huang, H.-J. (2016). Comparative analysis of transient responses of cylindrical shells induced by moving and simultaneous impulsive loads. Gaoya Wuli Xuebao/Chinese Journal of High Pressure Physics, 30, 491–498. doi: https://doi.org/10.11858/gywlxb.2016.06.009
  18. Konstantinov, A. Y., Kochetkov, A. V., Krylov, S. V., Smirnov, I. V. (2016). Simulation the dynamics of a composite cylindrical shell with a gas-permeable layer under the internal impulse loading. Materials physics and mechanics, 28 (1/2), 39–42.
  19. Heydarpour, Y., Mohammadzaheri, M., Ghodsi, M., Soltani, P., Al-Jahwari, F., Bahadur, I., Al-Amri, B. (2021). A coupled DQ-Heaviside-NURBS approach to investigate nonlinear dynamic response of GRE cylindrical shells under impulse loads. Thin-Walled Structures, 165, 107958. doi: https://doi.org/10.1016/j.tws.2021.107958
  20. Huang, Z., Yu, X. (2022). Numerical Simulation Study of Expanding Fracture of 45 Steel Cylindrical Shell under Different Detonation Pressure. Materials, 15 (11), 3980. doi: https://doi.org/10.3390/ma15113980
  21. Ji, C., Long, Y., Fang, X., Liu, Q., Gao, F.-Y. (2013). Dynamic response and perforation failure of cylindrical shell subjected to lateral local impulsive loading. Zhendong yu Chongji/Journal of Vibration and Shock, 32.
  22. Voropay, A. V., Povalyaev, S. I., Sharapata, A. S., Yanyutin, E. G. (2005). Primenenie teorii integral'nykh uravneniy Vol'terra pri reshenii dinamicheskikh obratnykh zadach dlya plastin i obolochek. Vestnik Khar'kovskogo natsional'nogo universiteta. Seriya: Matematychne modeliuvannia. Informatsiyni tekhnolohiyi. Avtomatyzovani systemy upravlinnia, 661, 69–82.
  23. Yanyutin, E. G., Povalyaev, S. I. (2005). Nekorrektnye zadachi impul'snogo deformirovaniya dlya tsilindricheskoy obolochki. Vestnik natsional'nogo tekhnicheskogo universiteta "KhPI",22, 129–138.
  24. Yanyutin, E. G., Povalyaev, S. I. (2008). Identification of nonstationary axisymmetric load distributed along a cylindrical shell. International Applied Mechanics, 44 (7), 794–801. doi: https://doi.org/10.1007/s10778-008-0093-3
  25. Egorov, P. A. (2014). Identifikatsiya nestatsionarnykh nagruzok, vozdeystvuyuschikh na sharnirno-opertuyu obolochku, podkreplennuyu kontsentricheskimi rebrami zhestkosti. Visnyk NTU «KhPI». Seriya: Matematychne modeliuvannia v tekhnitsi ta tekhnolohiyakh, 39 (1082), 71–80.
  26. Yanyutin, Ye. G., Gnatenko, G. A., Yegorov, P. A. (2018). Nonstationary deformation of reinforced cylindrical shells. Bulletin of the National Technical University "KhPI". Ser.: Mathematical modeling in engineering and technologies, 27 (1303), 148–156. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/40827
  27. Yanyutin, E. G., Gnatenko, G. A. (2010). Identifikatsiya nagruzki, vozdeystvuyuschey na sostavnuyu balku. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu, 49, 93–97.
  28. Voropai, A. V., Yanyutin, E. G. (2007). Identification of several impulsive loads on a plate. International Applied Mechanics, 43 (7), 780–785. doi: https://doi.org/10.1007/s10778-007-0078-7
  29. Ditkin, V. A., Prudnikov, A. P. (1966). Operatsionnoe ischislenie. Moscow: Vysshaya shkola, 405.
  30. Voropay, A. V. (2018). Integral'nye uravneniya Vol'terra v nekorrektnykh zadachakh nestatsionarnogo deformirovaniya plastin. Kharkiv: Izd-vo «Lider», 212. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/41162/1/Book_2018_Voropay_Integr_uravneniya.pdf
Identification of the pulse axisymmetric load acting on a composite cylindrical shell, inhomogeneous in length, made of different materials

Downloads

Published

2022-10-31

How to Cite

Voropay, A., Gnatenko, G., Yehorov, P., Povaliaiev, S., & Naboka, O. (2022). Identification of the pulse axisymmetric load acting on a composite cylindrical shell, inhomogeneous in length, made of different materials. Eastern-European Journal of Enterprise Technologies, 5(7 (119), 21–34. https://doi.org/10.15587/1729-4061.2022.265356

Issue

Section

Applied mechanics