Solving applied problems of elasticity theory in geomechanics using the method of argument functions of a complex variable

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.265673

Keywords:

soil arrays, soil mechanics, stressed state, argument functions, half-space

Abstract

When solving many tasks related to mine workings, rock pressure management, development systems, support structures, the issues of strength and stability of rocks become relevant. Limitations and gaps are identified, emphasizing the need for further research and development of new methods for solving applied problems of elasticity theory.

It is of theoretical and practical interest to determine the influence of half-space geometry on the stressed state of the medium and to assess whether it would suffice, in this case, to confine oneself to radial stress when characterizing the stressed state. To build a mathematical model of the stressed state of the array, a complex variable function argument method was used. Based on the developed complex variable function argument method, the applied problem of mechanics on loading the wedge with a concentrated force in polar coordinates was solved.

A feature of the proposed approach is the introduction of tangential stresses with the need to meet boundary conditions along inclined faces. The introduction to the consideration of tangential stress shows that it cannot be neglected at a certain stage of the search for a solution. First of all, this is due to the half-space geometry, the angle at the apex, and the depth of the array. When changing the angle of the wedge, the interface surface changes fundamentally and can pass from a convex shape to a concave one. Simplification of the proposed expressions leads to a complete coincidence with the solutions by other authors obtained by the stress method, which indicates the reliability of the result reported here. This method may be advanced by complicating the half-space geometry, as well as loading, and by building a mathematical model for assessing the effect of tangent stresses on the strength and stability of soils

Author Biographies

Valeriy Chigirinsky, Rudny Industrial Institute

Doctor of Technical Sciences, Professor

Department of Metallurgy and Mining

Abdrakhman Naizabekov, Rudny Industrial Institute

Doctor of Technical Sciences, Professor, Chairman of the Management Board-Rector

Department of Metallurgy and Mining

Sergey Lezhnev, Rudny Industrial Institute

Candidate of Technical Sciences, Associate Professor

Department of Metallurgy and Mining

Sergey Kuzmin, Rudny Industrial Institute

Candidate of Technical Sciences

Department of Metallurgy and Mining

Olena Naumenko, Dnipro University of Technology

Senior Lecturer

Department of Structural, Theoretical and Applied Mechanics

References

  1. Loveridge, F., McCartney, J. S., Narsilio, G. A., Sanchez, M. (2020). Energy geostructures: A review of analysis approaches, in situ testing and model scale experiments. Geomechanics for Energy and the Environment, 22, 100173. doi: https://doi.org/10.1016/j.gete.2019.100173
  2. Kovalevska, I., Samusia, V., Kolosov, D., Snihur, V., Pysmenkova, T. (2020). Stability of the overworked slightly metamorphosed massif around mine working. Mining of Mineral Deposits, 14 (2), 43–52. doi: https://doi.org/10.33271/mining14.02.043
  3. Dinnik, A. N. (1925). O davlenii gornykh porod i raschete krepi krugloy shakhty. Inzhenernyy rabotnik, 7, 1–12.
  4. Timoshenko, S. P., Gud'er, Dzh. (1979). Teoriya uprugosti. Moscow: Nauka, 560.
  5. Nikiforov, S. N. (1955). Teoriya uprugosti i plastichnosti. Moscow: GILSI, 284.
  6. Bezukhov, N. I. (1968). Osnovy teorii uprugosti, plastichnosti i polzuchesti. Moscow: Vysshaya shkola, 512.
  7. Bartolomey, A. A. (2004). Mekhanika gruntov. Moscow: Izd-vo ASV, 303.
  8. Pol'shin, D. E. (1933). Opredelenie napryazheniy v grunte pri nagruzke chasti ego poverkhnosti. Sb. trudov Vsesoyuzn. in-ta osnovan. sooruzh., 1, 39–59.
  9. Tsytovich, N. A. (1983). Mekhanika gruntov. Moscow: Vysshaya shkola, 216.
  10. Gersevanov, N. M., Pol'shin, D. E. (1948). Teoreticheskie osnovy mekhaniki gruntov i ikh prakticheskoe primenenie. Moscow: Stroyizdat, 248.
  11. Yu, J., Yao, W., Duan, K., Liu, X., Zhu, Y. (2020). Experimental study and discrete element method modeling of compression and permeability behaviors of weakly anisotropic sandstones. International Journal of Rock Mechanics and Mining Sciences, 134, 104437. doi: https://doi.org/10.1016/j.ijrmms.2020.104437
  12. Shen, B., Duan, Y., Luo, X., van de Werken, M., Dlamini, B., Chen, L. et. al. (2020). Monitoring and modelling stress state near major geological structures in an underground coal mine for coal burst assessment. International Journal of Rock Mechanics and Mining Sciences, 129, 104294. doi: https://doi.org/10.1016/j.ijrmms.2020.104294
  13. Do, D.-P., Tran, N.-H., Dang, H.-L., Hoxha, D. (2019). Closed-form solution of stress state and stability analysis of wellbore in anisotropic permeable rocks. International Journal of Rock Mechanics and Mining Sciences, 113, 11–23. doi: https://doi.org/10.1016/j.ijrmms.2018.11.002
  14. Tikhonov, A. N., Samarskiy, A. A. (1999). Uravneniya matematicheskoy fiziki. Moscow: Izd-vo MGU, 799.
  15. Koshlyakov, N. S., Gliner, E. B., Smirnov, M. M. (1970). Uravneniya v chastnykh proizvodnykh matematicheskoy fiziki. Moscow: Vysshaya shkola, 710.
  16. Vinay, L. S., Bhattacharjee, R. M., Ghosh, N., Budi, G., Kumar, J. V., Kumar, S. (2022). Numerical study of stability of coal pillars under the influence of line of extraction. Geomatics, Natural Hazards and Risk, 13 (1), 1556–1570. doi: https://doi.org/10.1080/19475705.2022.2088409
  17. Xie, B., Yan, Z., Du, Y., Zhao, Z., Zhang, X. (2019). Determination of Holmquist–Johnson–Cook Constitutive Parameters of Coal: Laboratory Study and Numerical Simulation. Processes, 7 (6), 386. doi: https://doi.org/10.3390/pr7060386
  18. Wijesinghe, D. R., Dyson, A., You, G., Khandelwal, M., Song, C., Ooi, E. T. (2022). Development of the scaled boundary finite element method for image-based slope stability analysis. Computers and Geotechnics, 143, 104586. doi: https://doi.org/10.1016/j.compgeo.2021.104586
  19. Sherzer, G. L., Alghalandis, Y. F., Peterson, K., Shah, S. (2022). Comparative study of scale effect in concrete fracturing via Lattice Discrete Particle and Finite Discrete Element Models. Engineering Failure Analysis, 135, 106062. doi: https://doi.org/10.1016/j.engfailanal.2022.106062
  20. Pariseau, W. G., McCarter, M. K., Wempen, J. M. (2019). Comparison of closure measurements with finite element model results in an underground coal mine in central Utah. International Journal of Mining Science and Technology, 29 (1), 9–15. doi: https://doi.org/10.1016/j.ijmst.2018.11.013
  21. Sneddon, I. N., Berri, D. S. (1961). Klassicheskaya teoriya uprugosti. Moscow: Gos. izd-vo fiz.-mat. lit-ry, 219.
  22. Sinekop, N. S., Lobanova, L. S., Parkhomenko, L. A. (2015). Metod R–funktsiy v dinamicheskikh zadachakh teorii uprugosti. Kharkiv, 95.
  23. Muskhelishvili, N. I. (1966). Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti. Moscow: Nauka, 709.
  24. Pozharskiy, D. A. (2017). Kontaktnaya zadacha dlya ortotropnogo poluprostranstva. Mekhanika tverdogo tela, 3, 100–108.
  25. Cassiani, G., Brovelli, A., Hueckel, T. (2017). A strain-rate-dependent modified Cam-Clay model for the simulation of soil/rock compaction. Geomechanics for Energy and the Environment, 11, 42–51. doi: https://doi.org/10.1016/j.gete.2017.07.001
  26. Vasiliev, L. M., Vasiliev, D. L., Malich, M. G., Anhelovskyi, O. O. (2017). Analytical method for calculating and charting “stress–deformation” provided longitudinal form of destruction of rock samples. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 68–74. Available at: http://www.nvngu.in.ua/index.php/en/component/jdownloads/finish/68-03/8659-03-2017-vasiliev/0
  27. Chigirinsky, V., Putnoki, A. (2017). Development of a dynamic model of transients in mechanical systems using argument-functions. Eastern-European Journal of Enterprise Technologies, 3 (7 (87)), 11–22. doi: https://doi.org/10.15587/1729-4061.2017.101282
  28. Chigirinsky, V., Naumenko, O. (2019). Studying the stressed state of elastic medium using the argument functions of a complex variable. Eastern-European Journal of Enterprise Technologies, 5 (7 (101)), 27–35. doi: https://doi.org/10.15587/1729-4061.2019.177514
  29. Chigirinsky, V., Naumenko, O. (2020). Invariant differential generalizations in problems of the elasticity theory as applied to polar coordinates. Eastern-European Journal of Enterprise Technologies, 5 (7 (107)), 56–73. doi: https://doi.org/10.15587/1729-4061.2020.213476
  30. Chigirinsky, V., Naizabekov, A., Lezhnev, S. (2021). Closed problem of plasticity theory. Journal of Chemical Technology and Metallurgy, 56 (4), 867–876.
Solving applied problems of elasticity theory in geomechanics using the method of argument functions of a complex variable

Downloads

Published

2022-10-31

How to Cite

Chigirinsky, V., Naizabekov, A., Lezhnev, S., Kuzmin, S., & Naumenko, O. (2022). Solving applied problems of elasticity theory in geomechanics using the method of argument functions of a complex variable. Eastern-European Journal of Enterprise Technologies, 5(7 (119), 105–113. https://doi.org/10.15587/1729-4061.2022.265673

Issue

Section

Applied mechanics