Development technology of functional soft ice cream using beet pectin concentrate and probiotic
DOI:
https://doi.org/10.15587/1729-4061.2022.265966Keywords:
functional soft ice cream, beet pectin concentrate, probiotic, heavy metalsAbstract
Technology of soft ice cream has been developed using beet pectin concentrate (BPC) as a functional component. As an additional component of the probiotic action, the probiotic Bifidobacterium, Lactobacillus were introduced in an amount of 0.1 %. The regularities of the influence of BPC on the density and viscosity of prescription mixtures, whipping and resistance to melting of soft ice cream have been established.
With the introduction of more than 10.0 % of BPC, milk proteins coagulated, the texture of the prescription mixture was characterized by heterogeneity, a slight detachment of the aqueous phase was observed; soft ice cream had a slightly flaky texture.
The quality indicators of soft ice cream with different fat content (plombir –14.0 %, creamy – 11.6 %) with the addition of pectin concentrate and probiotic Bifidobacterium + Lactobacillus were studied. Soft ice cream is characterized by high nutritional value (the mass fraction of protein is 2.6–3.2 %, milk fat – 11.0–14.0 %, sucrose – 11.2–11.7 %), contains water-soluble vitamins and pectin (0.5–1.0 %), which is a natural enterosorbent.
The development of technology for the soft use of BPC allows expanding the range of food products enriched with functional ingredients. The introduction of probiotic improves the physiological functionality of the product, in particular, improves the functioning of the gastrointestinal tract
Supporting Agency
- This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. АP08052416 for young scientists for 2020–2022 years).
References
- Serafini, M., Stanzione, A., Foddai, S. (2012). Functional foods: traditional use and European legislation. International Journal of Food Sciences and Nutrition, 63, 7–9. doi: https://doi.org/10.3109/09637486.2011.637488
- Feng, N., Guo, X. (2012). Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Transactions of Nonferrous Metals Society of China, 22 (5), 1224–1231. doi: https://doi.org/10.1016/S1003-6326(11)61309-5
- Mehrandish, R., Rahimian, A., Shahriary, A. (2019). Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. Journal of Herbmed Pharmacology, 8, 69–77. doi: https://doi.org/10.15171/jhp.2019.12
- Zhexenbay, N., Akhmetsadykova, Sh., Nabiyeva, Zh., Kizatova, M., Iskakova, G. (2020). Using pectin as heavy metals detoxification agent to reduce environmental contamination and health risks. Procedia Environmental Science, Engineering and management, 7 (4), 551–562. Available at: http://www.procedia-esem.eu/pdf/issues/2020/no4/8_60_Zhexenay_20.pdf
- Nabiyeva, Z., Zhexenbay, N., Iskakova, G., Kizatova, M., Akhmetsadykova, S. (2021). Development of dairy products technology with application low-etherificated pectin products. Eastern-European Journal of Enterprise Technologies, 3 (11 (111), 17–27. doi: https://doi.org/10.15587/1729-4061.2021.233821
- Espitia, P. J. P., Du, W.-X., Avena-Bustillos, R. de J., Soares, N. de F. F., McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. Food Hydrocolloids, 35, 287–296. doi: https://doi.org/10.1016/j.foodhyd.2013.06.005
- Yan, L., Yu, D., Liu, R., Jia, Y., Zhang, M., Wu, T., Sui, W. (2021). Microstructure and meltdown properties of low-fat ice cream: Effects of microparticulated soy protein hydrolysate/xanthan gum (MSPH/XG) ratio and freezing time. Journal of Food Engineering, 291, 110291. doi: https://doi.org/10.1016/j.jfoodeng.2020.110291
- Bekiroglu, H., Goktas, H., Karaibrahim, D., Bozkurt, F., Sagdic, O. (2022). Determination of rheological, melting and sensorial properties and volatile compounds of vegan ice cream produced with fresh and dried walnut milk. International Journal of Gastronomy and Food Science, 28, 100521. doi: https://doi.org/10.1016/j.ijgfs.2022.100521
- Goktas, H., Dikmen, H., Bekiroglu, H., Cebi, N., Dertli, E., Sagdic, O. (2022). Characteristics of functional ice cream produced with probiotic Saccharomyces boulardii in combination with Lactobacillus rhamnosus GG. LWT, 153, 112489. doi: https://doi.org/10.1016/j.lwt.2021.112489
- Dertli, E., Toker, O. S., Durak, M. Z., Yilmaz, M. T., Tatlısu, N. B., Sagdic, O., Cankurt, H. (2016). Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization. Carbohydrate Polymers, 136, 427–440. doi: https://doi.org/10.1016/j.carbpol.2015.08.047
- Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., Rascón-Chu, A. (2018). Pectin and pectin-based composite materials: Beyond food texture. Molecules, 23 (4), 942. doi: https://doi.org/10.3390/molecules23040942
- An, R., Wilms, E., Smolinska, A., Hermes, G. D., Masclee, A. A., de Vos, P. et al. (2019). Sugar beet pectin supplementation did not alter profiles of fecal microbiota and exhaled breath in healthy young adults and healthy elderly. Nutrients, 11 (9), 2193. doi: https://doi.org/10.3390/nu11092193
- Le Gall, B., Taran, F., Renault, D., Wilk, J.-C., Ansoborlo, E. (2006). Comparison of Prussian blue and apple-pectin efficacy on 137Cs decorporation in rats. Biochimie, 88 (11), 1837–1841. doi: https://doi.org/10.1016/j.biochi.2006.09.010
- Durmaz, Y., Kilicli, M., Toker, O. S., Konar, N., Palabiyik, I., Tamtürk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research, 47, 101811. doi: https://doi.org/10.1016/j.algal.2020.101811
- Míšková, Z., Salek, R. N., Křenková, B., Kůrová, V., Němečková, I., Pachlová, V., Buňka, F. (2021). The effect of κ- and ι-carrageenan concentrations on the viscoelastic and sensory properties of cream desserts during storage. LWT, 145, 111539. doi: https://doi.org/10.1016/j.lwt.2021.111539
- Ryabtseva, S., Akhmedova, V., Anisimov, G. (2018). Ice cream as a carrier of Lactobacillus acidophilus. Food Processing: Techniques and Technology, 48 (2), 5–27. doi: https://doi.org/10.21603/2074-9414-2018-2-5-27
- Li, M., Jin, Y., Wang, Y., Meng, L., Zhang, N., Sun, Y. et al. (2019). Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality. Journal of dairy science, 102 (6), 4832–4843. doi: https://doi.org/10.3168/jds.2018-15597
- Bianchi, F., Larsen, N., de Mello Tieghi, T., Adorno, M. A. T., Kot, W., Saad, S. M. I. et al. (2018). Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46. Applied microbiology and biotechnology, 102, 8827–8840. doi: https://doi.org/10.1007/s00253-018-9234-8
- Nilsson, U., Nyman, M., Ahrné, S., Sullivan, E. O., Fitzgerald, G. (2006). Bifidobacterium lactis Bb-12 and Lactobacillus salivarius UCC500 Modify Carboxylic Acid Formation in the Hindgut of Rats Given Pectin, Inulin, and Lactitol. The Journal of Nutrition, 136 (8), 2175–2180. doi: https://doi.org/10.1093/jn/136.8.2175
- Ohno, K., Narushima, S., Takeuchi, S., Itoh, K., Mitsuoka, T., Nakayama, H. et al. (2000). Inhibitory effect of apple pectin and culture condensate of Bifidobacterium longum on colorectal tumors induced by 1, 2-dimethylhydrazine in transgenic mice harboring human prototype c-Ha-ras genes. Experimental animals, 49 (4), 305–307. doi: https://doi.org/10.1538/expanim.49.305
- Pronina, Yu. G., Nabieva, Zh. S., Shukesheva, S. E. (2021). Perspektivy ispol'zovaniya molochnokislykh mikroorganizmov v proizvodstve marmelada. Integration of Education, Science and Business in Modern Environment: Summer Debates: abstracts of the 3rd International Scientific and Practical Internet Conference. Dnipro, 413–415. Available at: http://www.wayscience.com/wp-content/uploads/2021/08/Materials-of-conference-11-12.08.2021-1.pdf
- Nelyubina, E. G., Ignat'eva, N. Yu. (2019). Tekhnologiya proizvodstva deserta zamorozhennogo molochno-syvorotochnogo s dobavleniem tykvennogo pyure. Paradigma, 2, 152–156. Available at: https://cyberleninka.ru/article/n/tehnologiya-proizvodstva-deserta-zamorozhennogo-molochno-syvorotochnogo-s-dobavleniem-tykvennogo-pyure
- Bindereif, B., Eichhöfer, H., Bunzel, M., Karbstein, H. P., Wefers, D., Van der Schaaf, U. S. (2021). Arabinan side-chains strongly affect the emulsifying properties of acid-extracted sugar beet pectins. Food Hydrocolloids, 121, 106968. doi: https://doi.org/10.1016/j.foodhyd.2021.106968
- Guo, X., Guo, X., Yu, S., Kong, F. (2018). Influences of the different chemical components of sugar beet pectin on the emulsifying performance of conjugates formed between sugar beet pectin and whey protein isolate. Food Hydrocolloids, 82, 1–10. doi: https://doi.org/10.1016/j.foodhyd.2018.03.032
- Xiang, J., Liu, F., Fan, R., Gao, Y. (2015). Physicochemical stability of citral emulsions stabilized by milk proteins (lactoferrin, α-lactalbumin, β-lactoglobulin) and beet pectin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 487, 104–112. doi: https://doi.org/10.1016/j.colsurfa.2015.09.033
- Zharylkasynova, Z., Iskakova, G., Baiysbayeva, M., Izembayeva, A., Slavov, A. (2022). The influence of beet pectin concentrate and whole-ground corn flour on the quality and safety of hardtacks. Potravinarstvo Slovak Journal of Food Sciences, 16, 603–621. doi: https://doi.org/10.5219/1780
- Kubczak, M., Khassenova, A. B., Skalski, B., Michlewska, S., Wielanek, M., Skłodowska, M. et al. (2022). Hippophae rhamnoides L. leaf and twig extracts as rich sources of nutrients and bioactive compounds with antioxidant activity. Scientific Reports, 12, 1095. doi: https://doi.org/10.1038/s41598-022-05104-2
- KHodyreva, Z. R., Schetinin, M. P., Vaytanis, M. A., Neverova, N. A. (2016). Issledovanie potrebitel'skikh svoystv zamorozhennykh desertov. Polzunovskiy vestnik, 3, 44–48. Available at: https://cyberleninka.ru/article/n/issledovanie-potrebitelskih-svoystv-zamorozhennyh-desertov
- GOST 31986-2012. Uslugi obschestvennogo pitaniya. Metod organolepticheskoy otsenki kachestva produktsii obschestvennogo pitaniya.
- Tret'yak, L. N., Vorob'ev, A. L. (2022). Osnovy teorii i praktiki obrabotki eksperimental'nykh dannykh. Moscow: Izdatel'stvo Yurayt, 237.
- Barros, E.L. da S., Silva, C. C., Verruck, S., Canella, M. H. M., Maran, B. M., Esmerino, E. A. et al. (2022). Concentrated whey from block freeze concentration or milk-based ice creams on Bifidobacterium BB-12 survival under in vitro simulated gastrointestinal conditions. Food Science and Technology, 42. doi: https://doi.org/10.1590/fst.84021
- Seddik, H. A., Bendali, F., Gancel, F., Fliss, I., Spano, G., Drider, D. (2017). Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics and Antimicrobial Proteins, 9, 111–122. doi: https://doi.org/10.1007/s12602-017-9264-z
- Baliyan, N., Kumari, M., Kumari, P., Dindhoria, K., Mukhia, S., Kumar, S. et al. (2022). Probiotics in fermented products and supplements. Current Developments in Biotechnology and Bioengineering. Technologies for Production of Nutraceuticals and Functional Food Products, 73–107. doi: https://doi.org/10.1016/B978-0-12-823506-5.00014-X
- Zheksenbay, N., Zhұmaғazieva, F., Pronina, Yu. G., Nabieva, Zh. S., Kizatova, M. Zh. (2022). Pektinmen bayytylғan sүt өnіmderіn zhasau. «Ғylym. Bіlіm. ZHastar = Nauka. Obrazovanie. Molodezh'»: Respub. ғyl.-tәzh. zhas ғalym. konf. Almaty: ATU, 67–68.
- Zhang, H., Chen, J., Li, J., Wei, C., Ye, X., Shi, J., Chen, S. (2018). Pectin from Citrus Canning Wastewater as Potential Fat Replacer in Ice Cream. Molecules, 23 (4), 925.doi: https://doi.org/10.3390/molecules23040925
- Yang, Y., Babich, O., Sukhikh, S., Zimina, M., Milentyeva, I. (2020). Antibiotic activity and resistance of lactic acid bacteria and other antagonistic bacteriocin-producing microorganisms. Foods and Raw Materials, 8 (2), 377–384. doi: https://doi.org/10.21603/2308-4057-2020-2-377-384
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Nurshash Zhexenbay, Maigul Kizatova, Zhanar Nabiyeva, Galiya Iskakova, Nataliya Grynchenko, Andriy Foshchan, Olga Grinchenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.