Development technology of functional soft ice cream using beet pectin concentrate and probiotic

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.265966

Keywords:

functional soft ice cream, beet pectin concentrate, probiotic, heavy metals

Abstract

Technology of soft ice cream has been developed using beet pectin concentrate (BPC) as a functional component. As an additional component of the probiotic action, the probiotic Bifidobacterium, Lactobacillus were introduced in an amount of 0.1 %. The regularities of the influence of BPC on the density and viscosity of prescription mixtures, whipping and resistance to melting of soft ice cream have been established.

With the introduction of more than 10.0 % of BPC, milk proteins coagulated, the texture of the prescription mixture was characterized by heterogeneity, a slight detachment of the aqueous phase was observed; soft ice cream had a slightly flaky texture.

The quality indicators of soft ice cream with different fat content (plombir –14.0 %, creamy – 11.6 %) with the addition of pectin concentrate and probiotic Bifidobacterium + Lactobacillus were studied. Soft ice cream is characterized by high nutritional value (the mass fraction of protein is 2.6–3.2 %, milk fat – 11.0–14.0 %, sucrose – 11.2–11.7 %), contains water-soluble vitamins and pectin (0.5–1.0 %), which is a natural enterosorbent.

The development of technology for the soft use of BPC allows expanding the range of food products enriched with functional ingredients. The introduction of probiotic improves the physiological functionality of the product, in particular, improves the functioning of the gastrointestinal tract

Supporting Agency

  • This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. АP08052416 for young scientists for 2020–2022 years).

Author Biographies

Nurshash Zhexenbay, Almaty Technological University; Asfendiyarov Kazakh National Medical University

PhD, Associate Professor, Lecturer

Department of Food Technology

Department of Pharmaceutical Technology

Maigul Kizatova, Asfendiyarov Kazakh National Medical University

Doctor of Technical Sciences, Professor

Department of Pharmaceutical Technology

Zhanar Nabiyeva, Almaty Technological University

PhD

Director of Research Institute

Research Institute of Food Safety

Galiya Iskakova, Almaty Technological University

Doctor of Technical Sciences, Professor

Department of Technology of Bakery Products and Processing Industries

Nataliya Grynchenko, State Biotechnological University

Doctor of Technical Sciences, Associate Professor

Department of Meat Processing Technologies

Andriy Foshchan, State Biotechnological University

Doctor of Technical Sciences, Associate Professor

Department of Food Technology in the Restaurant Industry

Olga Grinchenko, State Biotechnological University

Doctor of Technical Sciences, Professor

Department of Food Technology in the Restaurant Industry

References

  1. Serafini, M., Stanzione, A., Foddai, S. (2012). Functional foods: traditional use and European legislation. International Journal of Food Sciences and Nutrition, 63, 7–9. doi: https://doi.org/10.3109/09637486.2011.637488
  2. Feng, N., Guo, X. (2012). Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Transactions of Nonferrous Metals Society of China, 22 (5), 1224–1231. doi: https://doi.org/10.1016/S1003-6326(11)61309-5
  3. Mehrandish, R., Rahimian, A., Shahriary, A. (2019). Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. Journal of Herbmed Pharmacology, 8, 69–77. doi: https://doi.org/10.15171/jhp.2019.12
  4. Zhexenbay, N., Akhmetsadykova, Sh., Nabiyeva, Zh., Kizatova, M., Iskakova, G. (2020). Using pectin as heavy metals detoxification agent to reduce environmental contamination and health risks. Procedia Environmental Science, Engineering and management, 7 (4), 551–562. Available at: http://www.procedia-esem.eu/pdf/issues/2020/no4/8_60_Zhexenay_20.pdf
  5. Nabiyeva, Z., Zhexenbay, N., Iskakova, G., Kizatova, M., Akhmetsadykova, S. (2021). Development of dairy products technology with application low-etherificated pectin products. Eastern-European Journal of Enterprise Technologies, 3 (11 (111), 17–27. doi: https://doi.org/10.15587/1729-4061.2021.233821
  6. Espitia, P. J. P., Du, W.-X., Avena-Bustillos, R. de J., Soares, N. de F. F., McHugh, T. H. (2014). Edible films from pectin: Physical-mechanical and antimicrobial properties - A review. Food Hydrocolloids, 35, 287–296. doi: https://doi.org/10.1016/j.foodhyd.2013.06.005
  7. Yan, L., Yu, D., Liu, R., Jia, Y., Zhang, M., Wu, T., Sui, W. (2021). Microstructure and meltdown properties of low-fat ice cream: Effects of microparticulated soy protein hydrolysate/xanthan gum (MSPH/XG) ratio and freezing time. Journal of Food Engineering, 291, 110291. doi: https://doi.org/10.1016/j.jfoodeng.2020.110291
  8. Bekiroglu, H., Goktas, H., Karaibrahim, D., Bozkurt, F., Sagdic, O. (2022). Determination of rheological, melting and sensorial properties and volatile compounds of vegan ice cream produced with fresh and dried walnut milk. International Journal of Gastronomy and Food Science, 28, 100521. doi: https://doi.org/10.1016/j.ijgfs.2022.100521
  9. Goktas, H., Dikmen, H., Bekiroglu, H., Cebi, N., Dertli, E., Sagdic, O. (2022). Characteristics of functional ice cream produced with probiotic Saccharomyces boulardii in combination with Lactobacillus rhamnosus GG. LWT, 153, 112489. doi: https://doi.org/10.1016/j.lwt.2021.112489
  10. Dertli, E., Toker, O. S., Durak, M. Z., Yilmaz, M. T., Tatlısu, N. B., Sagdic, O., Cankurt, H. (2016). Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization. Carbohydrate Polymers, 136, 427–440. doi: https://doi.org/10.1016/j.carbpol.2015.08.047
  11. Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., Rascón-Chu, A. (2018). Pectin and pectin-based composite materials: Beyond food texture. Molecules, 23 (4), 942. doi: https://doi.org/10.3390/molecules23040942
  12. An, R., Wilms, E., Smolinska, A., Hermes, G. D., Masclee, A. A., de Vos, P. et al. (2019). Sugar beet pectin supplementation did not alter profiles of fecal microbiota and exhaled breath in healthy young adults and healthy elderly. Nutrients, 11 (9), 2193. doi: https://doi.org/10.3390/nu11092193
  13. Le Gall, B., Taran, F., Renault, D., Wilk, J.-C., Ansoborlo, E. (2006). Comparison of Prussian blue and apple-pectin efficacy on 137Cs decorporation in rats. Biochimie, 88 (11), 1837–1841. doi: https://doi.org/10.1016/j.biochi.2006.09.010
  14. Durmaz, Y., Kilicli, M., Toker, O. S., Konar, N., Palabiyik, I., Tamtürk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research, 47, 101811. doi: https://doi.org/10.1016/j.algal.2020.101811
  15. Míšková, Z., Salek, R. N., Křenková, B., Kůrová, V., Němečková, I., Pachlová, V., Buňka, F. (2021). The effect of κ- and ι-carrageenan concentrations on the viscoelastic and sensory properties of cream desserts during storage. LWT, 145, 111539. doi: https://doi.org/10.1016/j.lwt.2021.111539
  16. Ryabtseva, S., Akhmedova, V., Anisimov, G. (2018). Ice cream as a carrier of Lactobacillus acidophilus. Food Processing: Techniques and Technology, 48 (2), 5–27. doi: https://doi.org/10.21603/2074-9414-2018-2-5-27
  17. Li, M., Jin, Y., Wang, Y., Meng, L., Zhang, N., Sun, Y. et al. (2019). Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality. Journal of dairy science, 102 (6), 4832–4843. doi: https://doi.org/10.3168/jds.2018-15597
  18. Bianchi, F., Larsen, N., de Mello Tieghi, T., Adorno, M. A. T., Kot, W., Saad, S. M. I. et al. (2018). Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46. Applied microbiology and biotechnology, 102, 8827–8840. doi: https://doi.org/10.1007/s00253-018-9234-8
  19. Nilsson, U., Nyman, M., Ahrné, S., Sullivan, E. O., Fitzgerald, G. (2006). Bifidobacterium lactis Bb-12 and Lactobacillus salivarius UCC500 Modify Carboxylic Acid Formation in the Hindgut of Rats Given Pectin, Inulin, and Lactitol. The Journal of Nutrition, 136 (8), 2175–2180. doi: https://doi.org/10.1093/jn/136.8.2175
  20. Ohno, K., Narushima, S., Takeuchi, S., Itoh, K., Mitsuoka, T., Nakayama, H. et al. (2000). Inhibitory effect of apple pectin and culture condensate of Bifidobacterium longum on colorectal tumors induced by 1, 2-dimethylhydrazine in transgenic mice harboring human prototype c-Ha-ras genes. Experimental animals, 49 (4), 305–307. doi: https://doi.org/10.1538/expanim.49.305
  21. Pronina, Yu. G., Nabieva, Zh. S., Shukesheva, S. E. (2021). Perspektivy ispol'zovaniya molochnokislykh mikroorganizmov v proizvodstve marmelada. Integration of Education, Science and Business in Modern Environment: Summer Debates: abstracts of the 3rd International Scientific and Practical Internet Conference. Dnipro, 413–415. Available at: http://www.wayscience.com/wp-content/uploads/2021/08/Materials-of-conference-11-12.08.2021-1.pdf
  22. Nelyubina, E. G., Ignat'eva, N. Yu. (2019). Tekhnologiya proizvodstva deserta zamorozhennogo molochno-syvorotochnogo s dobavleniem tykvennogo pyure. Paradigma, 2, 152–156. Available at: https://cyberleninka.ru/article/n/tehnologiya-proizvodstva-deserta-zamorozhennogo-molochno-syvorotochnogo-s-dobavleniem-tykvennogo-pyure
  23. Bindereif, B., Eichhöfer, H., Bunzel, M., Karbstein, H. P., Wefers, D., Van der Schaaf, U. S. (2021). Arabinan side-chains strongly affect the emulsifying properties of acid-extracted sugar beet pectins. Food Hydrocolloids, 121, 106968. doi: https://doi.org/10.1016/j.foodhyd.2021.106968
  24. Guo, X., Guo, X., Yu, S., Kong, F. (2018). Influences of the different chemical components of sugar beet pectin on the emulsifying performance of conjugates formed between sugar beet pectin and whey protein isolate. Food Hydrocolloids, 82, 1–10. doi: https://doi.org/10.1016/j.foodhyd.2018.03.032
  25. Xiang, J., Liu, F., Fan, R., Gao, Y. (2015). Physicochemical stability of citral emulsions stabilized by milk proteins (lactoferrin, α-lactalbumin, β-lactoglobulin) and beet pectin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 487, 104–112. doi: https://doi.org/10.1016/j.colsurfa.2015.09.033
  26. Zharylkasynova, Z., Iskakova, G., Baiysbayeva, M., Izembayeva, A., Slavov, A. (2022). The influence of beet pectin concentrate and whole-ground corn flour on the quality and safety of hardtacks. Potravinarstvo Slovak Journal of Food Sciences, 16, 603–621. doi: https://doi.org/10.5219/1780
  27. Kubczak, M., Khassenova, A. B., Skalski, B., Michlewska, S., Wielanek, M., Skłodowska, M. et al. (2022). Hippophae rhamnoides L. leaf and twig extracts as rich sources of nutrients and bioactive compounds with antioxidant activity. Scientific Reports, 12, 1095. doi: https://doi.org/10.1038/s41598-022-05104-2
  28. KHodyreva, Z. R., Schetinin, M. P., Vaytanis, M. A., Neverova, N. A. (2016). Issledovanie potrebitel'skikh svoystv zamorozhennykh desertov. Polzunovskiy vestnik, 3, 44–48. Available at: https://cyberleninka.ru/article/n/issledovanie-potrebitelskih-svoystv-zamorozhennyh-desertov
  29. GOST 31986-2012. Uslugi obschestvennogo pitaniya. Metod organolepticheskoy otsenki kachestva produktsii obschestvennogo pitaniya.
  30. Tret'yak, L. N., Vorob'ev, A. L. (2022). Osnovy teorii i praktiki obrabotki eksperimental'nykh dannykh. Moscow: Izdatel'stvo Yurayt, 237.
  31. Barros, E.L. da S., Silva, C. C., Verruck, S., Canella, M. H. M., Maran, B. M., Esmerino, E. A. et al. (2022). Concentrated whey from block freeze concentration or milk-based ice creams on Bifidobacterium BB-12 survival under in vitro simulated gastrointestinal conditions. Food Science and Technology, 42. doi: https://doi.org/10.1590/fst.84021
  32. Seddik, H. A., Bendali, F., Gancel, F., Fliss, I., Spano, G., Drider, D. (2017). Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics and Antimicrobial Proteins, 9, 111–122. doi: https://doi.org/10.1007/s12602-017-9264-z
  33. Baliyan, N., Kumari, M., Kumari, P., Dindhoria, K., Mukhia, S., Kumar, S. et al. (2022). Probiotics in fermented products and supplements. Current Developments in Biotechnology and Bioengineering. Technologies for Production of Nutraceuticals and Functional Food Products, 73–107. doi: https://doi.org/10.1016/B978-0-12-823506-5.00014-X
  34. Zheksenbay, N., Zhұmaғazieva, F., Pronina, Yu. G., Nabieva, Zh. S., Kizatova, M. Zh. (2022). Pektinmen bayytylғan sүt өnіmderіn zhasau. «Ғylym. Bіlіm. ZHastar = Nauka. Obrazovanie. Molodezh'»: Respub. ғyl.-tәzh. zhas ғalym. konf. Almaty: ATU, 67–68.
  35. Zhang, H., Chen, J., Li, J., Wei, C., Ye, X., Shi, J., Chen, S. (2018). Pectin from Citrus Canning Wastewater as Potential Fat Replacer in Ice Cream. Molecules, 23 (4), 925.doi: https://doi.org/10.3390/molecules23040925
  36. Yang, Y., Babich, O., Sukhikh, S., Zimina, M., Milentyeva, I. (2020). Antibiotic activity and resistance of lactic acid bacteria and other antagonistic bacteriocin-producing microorganisms. Foods and Raw Materials, 8 (2), 377–384. doi: https://doi.org/10.21603/2308-4057-2020-2-377-384
Development technology of functional soft ice cream using beet pectin concentrate and probiotic

Downloads

Published

2022-10-31

How to Cite

Zhexenbay, N., Kizatova, M., Nabiyeva, Z., Iskakova, G., Grynchenko, N., Foshchan, A., & Grinchenko, O. (2022). Development technology of functional soft ice cream using beet pectin concentrate and probiotic. Eastern-European Journal of Enterprise Technologies, 5(11 (119), 83–93. https://doi.org/10.15587/1729-4061.2022.265966

Issue

Section

Technology and Equipment of Food Production