Determining the degree of effect of heat flows on the deformation of the shell of a space inflatable platform with a payload

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.266161

Keywords:

space inflatable platform, payload, heat flows of the space environment, dispenser inertia tensor, elastic shell deformations

Abstract

This paper reports a study into the influence exerted by the thermal flows of space environment on the deformation of the shell of a space inflatable platform with a payload. The mathematical model of the effect of temperature fluctuations on the mass-inertial characteristics of the space inflatable platform of an ellipsoidal shape has been improved.

The following assumptions were introduced to the model. The temperature distribution on the illuminated part and the unlit part of the shell is uniform. The gradient of the temperature difference between the illuminated and unlit parts is the same for all points of the shell. To determine deformations, a moment-free theory was used. The model of the space inflatable platform is a «rubber bullet» that works only for stretching and compression. All deformations are elastic.

The advantages and limitations of the use of the developed mathematical model have been determined. Computer simulation of the orbital motion of a space inflatable platform with a payload in a sun-synchronous orbit was carried out. The material of the platform shell is Kapton. Estimates of temperature fluctuations in the illuminated and unlit part of the shell and the temperature of the gas inside it were obtained. The dependence of elastic deformations on temperature was determined, taking into account the Young’s modulus of the material. The influence of changes in gas pressure on the movement of payload attachment points and the change in the inertia tensor have been determined. The obtained results showed that the inertia tensor varies within the order of 10–5 kgm2. The maximum deviation of the fastening points of the payload from the initial position on the illuminated part of the shell was about 10–6 m.

Considering the stability of the structure to the effects of heat flows of the space environment, the possibility of using space inflatable platforms as a means for separating a grouping of satellites has been shown

Author Biographies

Erik Lapkhanov, Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and State Space Agency of Ukraine

PhD, Researcher

Department of Systems Analysis and Control Problems

Oleksandr Palii, Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and State Space Agency of Ukraine

PhD, Senior Researcher

Department of System Analysis and Control Problems

Aleksandr Golubek, Oles Honchar Dnipro National University

Doctor of Technical Sciences, Associate Professor

Department of Automated Control Systems

References

  1. Pogudin, A. V., Gubin, S. V. (2017). Overview of the Characteristics and Methods of Creating a Grouping of Small Spacecraft. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii, 75, 57–67. Available at: http://nbuv.gov.ua/UJRN/vikt_2017_75_8
  2. Parish, J. A. (2004). Optimizing coverage and revisit time in sparse military satellite constellations a comparison of traditional approaches and genetic algorithms. Monterey: Naval Postgraduate School, 125. Available at: https://ia800905.us.archive.org/12/items/optimizingcovera109451209/optimizingcovera109451209.pdf
  3. Cobb, W. W. (2019). How SpaceX lowered costs and reduced barriers to space. The Conversation Media Group Ltd. Available at: https://theconversation.com/how-spacex-lowered-costs-and-reduced-barriers-to-space-112586
  4. Wall, M. (2022). SpaceX raises launch and Starlink prices, citing inflation. Available at: https://www.space.com/spacex-raises-prices-launch-starlink-inflation
  5. IADC Space debris mitigation guidelines. IADC-02-01. Revision 2. Available at: https://orbitaldebris.jsc.nasa.gov/library/iadc-space-debris-guidelines-revision-2.pdf
  6. Schoneman, S., Roberts, J., Hadaller, A., Frego, T., Smithson, K., Lund, E. (2018). SSO-A: The First Large Commercial Dedicated Rideshare Mission. 32nd Annual AIAA/USU Conference on Small Satellites. Available at: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4073&context=smallsat
  7. Taylor, B., Fellowes, S., Dyer, B., Viquerat, A., Aglietti, G. (2020). A modular drag-deorbiting sail for large satellites in low Earth orbit. AIAA Scitech 2020 Forum. doi: https://doi.org/10.2514/6.2020-2166
  8. Sherpa-FX5 Orbital Debris Assessment Report (ODAR) (2021). Spaceflight, Inc. Available at: https://fcc.report/IBFS/SAT-STA-20210922-00127/13329215.pdf
  9. Small Spacecraft Mission Service VEGA-C. User’s Manual Issue 1 – Revision 0 (2020). Available at: https://www.arianespace.com/wp-content/uploads/2020/10/SSMS-Vega-C-UsersManual-Issue-1-Rev0-Sept2020.pdf
  10. Degtyarev, A. V., Gorbulin, V. P. (2014). Evolyutsiya raketno-kosmicheskikh razrabotok KB «Yuzhnoe». Visn. NAN Ukrainy, 6, 51–76. Available at: http://dspace.nbuv.gov.ua/handle/123456789/69588
  11. Makarenko, A. A., Mashchenko, A. N., Shevtsov, E. I. (2015). The development of modern means of spacecraft integration with a launch vehicle. Space Science and Technology, 21 (5), 18–23. doi: https://doi.org/10.15407/knit2015.05.018
  12. Field, D. W., Askijian, A., Grossman, J., Smith, A. D. (2015). Pat. No. US 9463882. System and method for assembling and deploying satellites. No. 14/700504; declareted: 30.04.2015; published: 11.10.2016. Available at: https://scienceon.kisti.re.kr/srch/selectPORSrchPatent.do?cn=USP2016109463882
  13. Field, D. W., Askijian, A., Grossman, J., Smith, A. D. (2015). Pat. No. US9718566B2. Stackable satellites and method of stacking same. No. 14/700,466. declareted: 30.04.2015; published: 01.08.2017. Available at: https://patents.google.com/patent/US9718566B2/en
  14. Cosner, C. M., Baldwin, M. S. (2019). Pat. No. US11214388. Self-contained payload accommodation module. No. 16/243225; declareted: 09.01.2019; published: 04.01.2022.
  15. Litteken, D. A. (2019). Inflatable technology: using flexible materials to make large structures. Electroactive Polymer Actuators and Devices (EAPAD) XXI. doi: https://doi.org/10.1117/12.2500091
  16. Valle, G. D., Litteken, D., Jones, T. C. (2019). Review of Habitable Softgoods Inflatable Design, Analysis, Testing, and Potential Space Applications. AIAA Scitech 2019 Forum. doi: https://doi.org/10.2514/6.2019-1018
  17. Wei, J., Yu, J., Tan, H., Wang, W., Eriksson, A. (2019). Design and testing of inflatable gravity-gradient booms in space. CEAS Space Journal, 12 (1), 33–41. doi: https://doi.org/10.1007/s12567-019-00256-w
  18. Koryanov, V. V., Alifanov, O. M., Nedogarok, A. A., Uk, Y. S., Firsuk, S. O., Kulkov, V. M. (2021). Review of the technologies for development the inflatable brake device for deorbiting the space objects. AIP Conference Proceedings. doi: https://doi.org/10.1063/5.0036055
  19. Martindell, C. (2022). Inflatable Space Station to Make Space Accessible. The American Society of Mechanical Engineers. Available at: https://www.asme.org/topics-resources/content/inflatable-space-station-to-make-space-accessible
  20. Palii, О., Lapkhanov, E. (2021). Space inflatable platform to accommodate payload. InterConf, 323–328. doi: https://doi.org/10.51582/interconf.7-8.12.2021.037
  21. Lapkhanov, E. O., Palii, O. S. (2021). Mathematical model for determining the design parameters of an inflatable payload-bearing space platform. Technical Mechanics, 4, 66–78. doi: https://doi.org/10.15407/itm2021.04.066
  22. Karpilovskyi, V. S. (2022). Metod skinchennykh elementiv i zadachi teoriyi pruzhnosti. Kyiv: «Sofiia A», 275.
  23. Beloglazov, V. P. (2016). Teoreticheskie osnovy teplotekhniki. Teploperedacha. Nizhnevartovsk: Izd-vo Nizhnevart. gos. un-ta, 118.
  24. Picone, J. M., Hedin, A. E., Drob, D. P., Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, 107 (A12), SIA 15-1-SIA 15-16. doi: https://doi.org/10.1029/2002ja009430
  25. Fortescue, P., Swinerd, G., Stark, J. (Eds.) (2011). Spacecraft systems engineering. John Wiley & Sons. doi: https://doi.org/10.1002/9781119971009
  26. Vinogradov, D. Yu., Davydov, E. A. (2017). Techniques of shaping steady near-circular solar-synchronous orbits for the long term existence of the spacecraft. Engineering Journal: Science and Innovation, 6 (66). doi: https://doi.org/10.18698/2308-6033-2017-6-1630
  27. NASA Systems engineering handbook (2007). NASA SP-2016-6105 Rev2. Available at: https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_handbook_0.pdf
Determining the degree of effect of heat flows on the deformation of the shell of a space inflatable platform with a payload

Downloads

Published

2022-10-30

How to Cite

Lapkhanov, E., Palii, O., & Golubek, A. (2022). Determining the degree of effect of heat flows on the deformation of the shell of a space inflatable platform with a payload. Eastern-European Journal of Enterprise Technologies, 5(1 (119), 6–16. https://doi.org/10.15587/1729-4061.2022.266161

Issue

Section

Engineering technological systems