Application of persimmon syrup to increase the biological value and organoleptic indicators of bread
DOI:
https://doi.org/10.15587/1729-4061.2022.267161Keywords:
“Azamatli-95” wheat, flour, “Hyakume” persimmon, fiber, vitamins, minerals, dough, breadAbstract
One of the factors hindering the widespread use of persimmon syrup in baking is the lack of knowledge of its functional properties for the production of a wide range of bread products due to its chemical composition. Based on this, a study of the method of obtaining persimmon syrup, quantitative changes in the nutritional content of the first-grade “Azamatli-95” wheat flour, persimmon syrup of the “Hyakume” variety, mixtures of wheat flour and persimmon syrup, bread with the addition of persimmon syrup was conducted. It was found that during the hot pre-treatment of persimmon, the pulp yield decreases to 25 %, and the juice yield increases to 67.7 %. The regularity of changes in water consumption for diluting the syrup and for kneading the dough, depending on the amount of syrup added to wheat flour, was revealed. With a 1 % increase in persimmon syrup, the consumption of water for diluting the syrup increases on average by 1.193, and the consumption of water per dough decreases by 1.3 on average. The regularity of the quantitative change of food substances during baking is revealed, which allows correcting their content in mixtures of wheat flour and persimmon syrup, and in bread with additives. It was found that the content of phenolic compounds in bread with the additive increases: in the control sample of bread it was 0.13 g/100 g, and in the samples of bread prepared according to options I, II and III it was 0.4, 0.51 and 0.64 g/100 g, respectively, which is 2.7 times more than in the A95WF-PS5, A95WF-PS10 and A95WF-PS15 mixtures from wheat flour and persimmon syrup. When adding up to 10 % persimmon syrup to the first-grade wheat flour, the organoleptic characteristics of the bread, except for the crumb color, improved. Increasing the amount of added persimmon syrup up to 15 % to wheat flour leads to the deterioration of all organoleptic indicators of bread with the additive. The obtained results give an opportunity to regulate the desired quality of bread and use persimmon syrup as a functional ingredient
Supporting Agency
- We would like to thank the Department of Food Engineering and Expertise of the Azerbaijan University of Technology.
References
- Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazarieva, T., Svidlo, K., Gontar, T. (2017). Design of technology for the rye-wheat bread “Kharkivski rodnichok” with the addition of polyfunctional food additive “Magnetofооd.” Eastern-European Journal of Enterprise Technologies, 6 (11 (90)), 48–58. doi: https://doi.org/10.15587/1729-4061.2017.117279
- Kalmykovа, E. V., Kalmykovа, О. V. (2016). Whole grain products in the baking industry. Balanced diet, nutritional supplements and biostimulants, 1, 65–70. Available at: https://s.journal-nutrition.ru/pdf/2016/1/35717.pdf
- Iorgachova, K., Makarova, O., Khvostenko, K. (2016). The rationale of selecting pastries to be made with waxy wheat flour. Eastern-European Journal of Enterprise Technologies, 2 (11 (80)), 12–18. doi: https://doi.org/10.15587/1729-4061.2016.65756
- Butt, M. S., Sultan, M. T., Aziz, M., Naz, A., Ahmed, W., Kumar, N., Imran, M. (2015). Persimmon (Diospyros kaki) fruit: hidden phytochemicals and health claims. EXCLI Journal, 14, 542–561. doi: https://doi.org/10.17179/excli2015-159
- Iskakova, G., Kizatova, M., Baiysbayeva, M., Azimova, S., Izembayeva, A., Zharylkassynova, Z. (2021). Justification of pectin concentrate safe storage terms by pectin mass ratio. Eastern-European Journal of Enterprise Technologies, 4 (11 (112)), 25–32. doi: https://doi.org/10.15587/1729-4061.2021.237940
- Guseinova, B. M. (2017). Chemical composition of fruit of persimmon depending on the variety and growing conditions. Woks of the State Nikit. Botan. Gard., 144 (1), 171–175. Available at: https://scbook.elpub.ru/jour/article/view/123/105
- Gasanova, H. Z. (2019). Fertilization of oriental persimmon (diospyros kaki) under the conditions of the Guba-Khachmaz Region of Azerbaijan. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta, 10 (180), 33–38. Available at: https://cyberleninka.ru/article/n/udobrenie-vostochnoy-hurmy-diospyros-kaki-v-usloviyah-kuba-hachmazskoy-zony-azerbaydzhana
- Takahashi, A., Flanigan, M. E., McEwen, B. S., Russo, S. J. (2018). Aggression, Social Stress, and the Immune System in Humans and Animal Models. Frontiers in Behavioral Neuroscience, 12. doi: https://doi.org/10.3389/fnbeh.2018.00056
- Bayramov, E., Aliyev, S., Gasimova, A., Gurbanova, S., Kazimova, I. (2022). Increasing the biological value of bread through the application of pumpkin puree. Eastern-European Journal of Enterprise Technologies, 2 (11 (116)), 58–68. doi: https://doi.org/10.15587/1729-4061.2022.254090
- Naumova, N. L., Chanov, I. M., Syrvacheva, M. V. (2019). Comparative analysis of high-quality wheat flour and bakery mixtures as raw materials for bakery production. Bulletin Оf Kamchatka State Technical University, 49, 21–26. doi: https://doi.org/10.17217/2079-0333-2019-49-21-26
- Khan, M. J., Jovicic, V., Zbogar-Rasic, A., Delgado, A. (2022). Enhancement of Wheat Flour and Dough Properties by Non-Thermal Plasma Treatment of Wheat Flour. Applied Sciences, 12 (16), 7997. doi: https://doi.org/10.3390/app12167997
- Shin, D.-S., Park, H.-Y., Kim, M.-H., Han, G.-J. (2011). Quality Characteristics of Bread with Persimmon Peel Powder. Korean Journal of Food and Cookery Science, 27 (5), 589–597. doi: https://doi.org/10.9724/kfcs.2011.27.5.589
- Moon, H. K., Han, J. H., Kim, J. H., Kim, G. Y., Kang, W. W., Kim, J. K. (2004). Quality Characteristics of Bread with Dried Persimmons Hot-Water Extracts. Journal of the Korean Society of Food Science and Nutrition, 33 (4), 723–729. doi: https://doi.org/10.3746/jkfn.2004.33.4.723
- Melnikov, V. А., Khokhlov, S. Yu., Panyushkina, E. S., Melkozerova, E. A. (2019). Biologically active substances in fresh persimmon fruit and the products of their processing. Pomiculture and Small Fruits Culture in Russia, 58 (1), 218–225. doi: https://doi.org/10.31676/2073-4948-2019-58-218-225
- Hafizov, G. K. (2022). Obtaining clarified juice from ripe softened persimmon fruits. IOP Conference Series: Earth and Environmental Science, 1052 (1), 012103. doi: https://doi.org/10.1088/1755-1315/1052/1/012103
- Evtushenkov, A. N. (2019). Erwinia, pectobacterium, dickea – kak obekty issledovaniy v BGU. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Biotekhnologii mikroorganizmov». Minsk: Belorusskiy gosudarstvenniy universitet, 264–267. Available at: http://www.bio.bsu.by/microbio/files/conference2019/BSU_proceedings_2019.pdf
- González, C. M., Hernando, I., Moraga, G. (2021). In Vitro and In Vivo Digestion of Persimmon and Derived Products: A Review. Foods, 10 (12), 3083. doi: https://doi.org/10.3390/foods10123083
- Martínez-Las Heras, R., Pinazo, A., Heredia, A., Andrés, A. (2017). Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chemistry, 214, 478–485. doi: https://doi.org/10.1016/j.foodchem.2016.07.104
- Zhu, W., Jia, Y., Peng, J., Li, C. (2018). Inhibitory Effect of Persimmon Tannin on Pancreatic Lipase and the Underlying Mechanism in Vitro. Journal of Agricultural and Food Chemistry, 66 (24), 6013–6021. doi: https://doi.org/10.1021/acs.jafc.8b00850
- Li, K., Yao, F., Du, J., Deng, X., Li, C. (2018). Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake. Journal of Agricultural and Food Chemistry, 66 (7), 1629–1637. doi: https://doi.org/10.1021/acs.jafc.7b05833
- Direito, R., Rocha, J., Sepodes, B., Eduardo-Figueira, M. (2021). From Diospyros kaki L. (Persimmon) Phytochemical Profile and Health Impact to New Product Perspectives and Waste Valorization. Nutrients, 13 (9), 3283. doi: https://doi.org/10.3390/nu13093283
- Tardugno, R., Gervasi, T., Nava, V., Cammilleri, G., Ferrantelli, V., Cicero, N. (2021). Nutritional and mineral composition of persimmon fruits (Diospyros kaki L.) from Central and Southern Italy. Natural Product Research, 36 (20), 5168–5173. doi: https://doi.org/10.1080/14786419.2021.1921768
- Zagirov, N. G., Gabibov, T. G., Gabibov, G. T. (2020). Tekhnologicheskaya i biokhimicheskaya otsenka plodov khurmy vostochnoy dlya ispol'zovaniya v pischevoy promyshlennosti. Materialy X Vserossiyskoy nauchno-prakticheskoy konferentsii «Povyshenie kachestva i bezopasnosti pischevykh produktov». Makhachkala: Dagestanskiy gosudarstvennyy tekhnicheskiy universitet, 88–96. Available at: https://www.elibrary.ru/item.asp?id=44844590
- Abdallah, D. A., Abd El-Mageed, M. R., Siliha, H. A., Rabie, M. A. (2017). Physicochemical characteristics of persimmon puree and its utilization in cupcake. Zagazig Journal of Agricultural Research, 44 (6), 2629–2640. doi: https://doi.org/10.21608/zjar.2017.51370
- Žilić, S. (2016). Phenolic Compounds of Wheat. Their Content, Antioxidant Capacity and Bioaccessibility. MOJ Food Processing & Technology, 2 (3). doi: https://doi.org/10.15406/mojfpt.2016.02.00037
- Moshkin, A. V., Vasyukova, A. T., Alexeyev, A. E. (2019). Dry functional blend with fruit-berry powders for yeast dough. Proceedings of the Voronezh State University of Engineering Technologies, 81 (2), 177–183. doi: https://doi.org/10.20914/2310-1202-2019-2-177-183
- Beltrão Martins, R., Nunes, M. C., Gouvinhas, I., Ferreira, L. M. M., Peres, J. A., Barros, A. I. R. N. A., Raymundo, A. (2022). Apple Flour in a Sweet Gluten-Free Bread Formulation: Impact on Nutritional Value, Glycemic Index, Structure and Sensory Profile. Foods, 11 (20), 3172. doi: https://doi.org/10.3390/foods11203172
- Luo, X., Arcot, J., Gill, T., Louie, J. C. Y., Rangan, A. (2019). A review of food reformulation of baked products to reduce added sugar intake. Trends in Food Science & Technology, 86, 412–425. doi: https://doi.org/10.1016/j.tifs.2019.02.051
- Gómez, M., Martinez, M. M. (2017). Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Critical Reviews in Food Science and Nutrition, 58 (13), 2119–2135. doi: https://doi.org/10.1080/10408398.2017.1305946
- Fərzəliyev, E. B. (2014). Qida məhsullarının müasir tədqiqat üsulları. Bakı: “İqtisad Universiteti” Nəşriyyatı, 365. Available at: http://anl.az/el/Kitab/2014/Ar2014-1383.pdf
- Bayramov, E. Ə. (2017). Laboratoriyada hazirlanmış çörək nümunəsinə əsasən unun çörəkbişirilməyə yararlığının təyini. Metodik göstəriş. Gəncə: Əsgəroğlu, 40. Available at: https://ru.calameo.com/read/005514285005b26dbb22c
- Koryachkina, S. Ya., Berezina, N. A., Khmeleva, E. V. (2010). Metody issledovaniya kachestva khlebobulochnykh izdeliy. Orel: OrelGTU, 166. Available at: https://oreluniver.ru/file/chair/thkimp/study/kopyachkina_met_issled.pdf
- One-way analysis of variance. Available at: https://en.wikipedia.org/wiki/One-way_analysis_of_variance
- Fedyanina, L. N., Smertina, E. S., Lyakh, V. A., Elizarova, A. E. (2018). Development and assessment of quality of bread with addition of product of the processing of Amur mountain ash. Khleboproducty, 12, 52–55. doi: https://doi.org/10.32462/0235-2508-2018-0-12-52-55
- Masenga, S. K., Kirabo, A., Hamooya, B. M., Nzala, S., Kwenda, G., Heimburger, D. C. et al. (2021). HIV-positive demonstrate more salt sensitivity and nocturnal non-dipping blood pressure than HIV-negative individuals. Clinical Hypertension, 27 (1). doi: https://doi.org/10.1186/s40885-020-00160-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eldaniz Bayramov, Farida Akbarova, Kamala Mustafayeva, Sevda Gurbanova, Ulduz Babayeva, Mehriban Aslanova, Ahad Nabiyev
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.