Revealing the effect of structural components made of sandwich panels on loading the container transported by railroad

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.272316

Keywords:

ISO container, sandwich panel, dynamic container load, container strength, container transportation

Abstract

The object of this study is the processes of emergence, perception, and redistribution of loads in the supporting structure of a 1CC size container with end walls made of sandwich panels.

To reduce the longitudinal load of the container under operational modes, the introduction of sandwich panels into its design is proposed. This solution is implemented on the example of its end walls as the most loaded component of the body in operation.

The thickness of the sandwich panel sheet was determined, provided that the strength in operation is ensured. Mathematical modeling of dynamic load of a container with end walls made of sandwich panels placed on a platform car during shunting co-impact was carried out. It was established that taking into account the proposed improvement makes it possible to reduce the dynamic loads that the container perceives by 10 % compared to the typical structure. The results were confirmed by computer simulation of the dynamic load of the container. The models formed within the framework of the study were verified according to the F-criterion.

The results of calculations for the strength of the container showed that the stresses in its structure are 15 % lower than those in the typical one.

A feature of the findings is that the proposed improvement of the container helps improve its strength in operation by reducing the loads acting on it.

The scope of practical use of the results is the engineering industry, namely, railroad transport. At the same time, the conditions for the practical application of the research results are the introduction of energy-absorbing material as a component of the sandwich panel.

This study will contribute to devising recommendations for designing modern structures of vehicles of a modular type and for improving the efficiency of the transport industry

Author Biographies

Glib Vatulia, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Professor

Vice-Rector for Research

Alyona Lovska, Ukrainian State University of Railway Transport

Doctor of Technical Sciences, Associate Professor

Department of Wagon Engineering and Product Quality

Sergiy Myamlin, Ukrainian State University of Railway Transport

PhD, Researcher

Department of Wagon Engineering and Product Quality

Iraida Stanovska, Odessа Polytechnic National University

Doctor of Technical Sciences, Professor

Department of Advanced Mathematics and Systems Modelling

Maryna Holofieieva, Odessа Polytechnic National University

PhD

Department of Machine Engineering Technologies

Volodymyr Horobets, Ukrainian State University of Science and Technologies

Doctor of Technical Sciences, Professor

Department of Environmental and Industrial Safety

Volodymyr Nerubatskyi, Ukrainian State University of Railway Transport

PhD, Associate Professor

Department of Electrical Power Engineering, Electrical Engineering and Electromechanics

Yevhen Krasnokutskyi, Branch “Scientific Research and Design Technological Institute of Railway Transport” JSC “Ukrainian Railway”

Deputy Branch Director

Branch for Scientific Work

References

  1. Qin, S., Zhong, Y., Yang, X., Zhao, M. (2008). Optimization and static strength test of carbody of light rail vehicle. Journal of Central South University of Technology, 15 (S2), 288–292. doi: https://doi.org/10.1007/s11771-008-0473-1
  2. Vatulia, G., Lovska, A., Pavliuchenkov, M., Nerubatskyi, V., Okorokov, A., Hordiienko, D. et al. (2022). Determining patterns of vertical load on the prototype of a removable module for long-size cargoes. Eastern-European Journal of Enterprise Technologies, 6 (7 (120)), 21–29. doi: https://doi.org/10.15587/1729-4061.2022.266855
  3. Nerubatskyi, V., Plakhtii, O., Hordiienko, D. (2021). Control and Accounting of Parameters of Electricity Consumption in Distribution Networks. 2021 XXXI International Scientific Symposium Metrology and Metrology Assurance (MMA). doi: https://doi.org/10.1109/mma52675.2021.9610907
  4. Nerubatskyi, V., Plakhtii, O., Hordiienko, D. (2022). Adaptive Modulation Frequency Selection System in Power Active Filter. 2022 IEEE 8th International Conference on Energy Smart Systems (ESS). doi: https://doi.org/10.1109/ess57819.2022.9969261
  5. Shah, K. J., Pan, S.-Y., Lee, I., Kim, H., You, Z., Zheng, J.-M., Chiang, P.-C. (2021). Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. Journal of Cleaner Production, 326, 129392. doi: https://doi.org/10.1016/j.jclepro.2021.129392
  6. Abdel Wahed Ahmed, M. M., Abd El Monem, N. (2020). Sustainable and green transportation for better quality of life case study greater Cairo – Egypt. HBRC Journal, 16 (1), 17–37. doi: https://doi.org/10.1080/16874048.2020.1719340
  7. Giriunas, K., Sezen, H., Dupaix, R. B. (2012). Evaluation, modeling, and analysis of shipping container building structures. Engineering Structures, 43, 48–57. doi: https://doi.org/10.1016/j.engstruct.2012.05.001
  8. Rzeczycki, A., Wiśnicki, B. (2016). Strength Analysis of Shipping Container Floor with Gooseneck Tunnel under Heavy Cargo Load. Solid State Phenomena, 252, 81–90. doi: https://doi.org/10.4028/www.scientific.net/ssp.252.81
  9. Ibragimov, N. N., Rahimov, R. V., Hadzhimuhamedova, M. A. (2015). Razrabotka konstruktsii konteynera dlya perevozki plodoovoschnoy produktsii. Molodoy ucheniy, 21 (101), 168–173. Available at: https://webcache.googleusercontent.com/search?q=cache:VT3ot930WMwJ:https://moluch.ru/archive/101/22929/&cd=1&hl=ru&ct=clnk&gl=ua
  10. Fomin, O., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Determination of the Loading of a Flat Rack Container during Operating Modes. Applied Sciences, 11 (16), 7623. doi: https://doi.org/10.3390/app11167623
  11. Płaczek, M., Wróbel, A., Olesiejuk, M. (2017). Modelling and arrangement of composite panels in modernized freight cars. MATEC Web of Conferences, 112, 06022. doi: https://doi.org/10.1051/matecconf/201711206022
  12. Chuan-jin, O., Bing-tao, L. (2020). Research and application of new multimodal transport equipment-swap bodies in China. E3S Web of Conferences, 145, 02001. doi: https://doi.org/10.1051/e3sconf/202014502001
  13. Wróbel, A., Płaczek, M., Buchacz, A. (2017). An Endurance Test of Composite Panels. Solid State Phenomena, 260, 241–248. doi: https://doi.org/10.4028/www.scientific.net/ssp.260.241
  14. Fomin, O., Gorbunov, M., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Research into the Strength of an Open Wagon with Double Sidewalls Filled with Aluminium Foam. Materials, 14 (12), 3420. doi: https://doi.org/10.3390/ma14123420
  15. Al-Sukhon, A., ElSayed, M. S. (2021). Design optimization of hopper cars employing functionally graded honeycomb sandwich panels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 236 (8), 920–935. doi: https://doi.org/10.1177/09544097211049640
  16. Bezuhov, N. I. (1957). Sbornik zadach po teorii upru gosti i plastichnosti. Moscow: Gosudartvennoe izdatel'stvo tekhniko-teoreticheskoy literatury, 286.
  17. Lovskaya, A., Ryibin, A. (2016). The study of dynamic load on a wagon–platform at a shunting collision. Eastern-European Journal of Enterprise Technologies, 3 (7 (81)), 4–8. doi: https://doi.org/10.15587/1729-4061.2016.72054
  18. Lovska, A. (2014). Assessment of dynamic efforts to bodies of wagons at transportation with railway ferries. Eastern-European Journal of Enterprise Technologies, 3 (4 (69)), 36–41. doi: https://doi.org/10.15587/1729-4061.2014.24997
  19. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  20. Nalapko, O., Shyshatskyi, A., Ostapchuk, V., Mahdi, Q. A., Zhyvotovskyi, R., Petruk, S. et al. (2021). Development of a method of adaptive control of military radio network parameters. Eastern-European Journal of Enterprise Technologies, 1 (9 (109)), 18–32. doi: https://doi.org/10.15587/1729-4061.2021.225331
  21. Panchenko, S., Vatulia, G., Lovska, A., Ravlyuk, V., Elyazov, I., Huseynov, I. (2022). Influence of structural solutions of an improved brake cylinder of a freight car of railway transport on its load in operation. EUREKA: Physics and Engineering, 6, 45–55. doi: https://doi.org/10.21303/2461-4262.2022.002638
  22. Zadachyn, V. M., Koniushenko, I. H. (2014). Chyselni metody. Kharkiv, 180. Available at: http://kist.ntu.edu.ua/textPhD/CHM_Zadachin.pdf
  23. Hoi, T. P., Makhnei, O. V. (2012). Dyferentsialni rivniannia. Ivano-Frankivsk, 352. Available at: https://kdrpm.pnu.edu.ua/wp-content/uploads/sites/55/2018/03/deinf_el.pdf
  24. Stoilov, V., Simić, G., Purgić, S., Milković, D., Slavchev, S., Radulović, S., Maznichki, V. (2019). Comparative analysis of the results of theoretical and experimental studies of freight wagon Sdggmrss-twin. IOP Conference Series: Materials Science and Engineering, 664 (1), 012026. doi: https://doi.org/10.1088/1757-899x/664/1/012026
  25. Lovska, A., Stanovska, I., Nerubatskyi, V., Hordiienko, D., Zinchenko, O., Karpenko, N., Semenenko, Y. (2022). Determining features of the stressed state of a passenger car frame with an energy-absorbing material in the girder beam. Eastern-European Journal of Enterprise Technologies, 5 (7 (119)), 44–53. doi: https://doi.org/10.15587/1729-4061.2022.265043
  26. Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Pavliuchenkov, M., Kravchenko, K. (2022). The Analysis of the Loading and the Strength of the FLAT RACK Removable Module with Viscoelastic Bonds in the Fittings. Applied Sciences, 13 (1), 79. doi: https://doi.org/10.3390/app13010079
  27. Fomin, O., Lovska, A. (2021). Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 6–14. doi: https://doi.org/10.15587/1729-4061.2021.220534
  28. Fang, Z., Han, M. (2014). Strength Analysis of the Railway Truck Body Based on ANSYS. Applied Mechanics and Materials, 615, 329–334. doi: https://doi.org/10.4028/www.scientific.net/amm.615.329
  29. Buchacz, A., Baier, A., Płaczek, M., Herbuś, K., Ociepka, P., Majzner, M. (2018). Development and analysis of a new technology of freight cars modernization. Journal of Vibroengineering, 20 (8), 2978–2997. doi: https://doi.org/10.21595/jve.2018.19206
  30. Rudenko, V. M. (2012). Matematichna statistika. Kyiv, 304. Available at: https://westudents.com.ua/knigi/578-matematichna-statistika-rudenko-vm.html
  31. Kobzar', A. I. (2006). Prikladnaya matematicheskaya statistika. Moscow, 816. Available at: https://www.at.alleng.org/d/math/math369.htm
  32. Melnychenko, O. P., Yakymenko, I. L., Shevchenko, R. L. (2006). Statystychna obrobka eksperymentalnykh danykh. Bila Tserkva, 35. Available at: https://teta.at.ua/Metodichka/mat_statustuka.pdf
  33. Perehuda, O. V., Kapustian, O. A., Kurylko, O. B. (2022). Statystychna obrobka danykh. Kyiv, 103. Available at: http://www.mechmat.univ.kiev.ua/wp-content/uploads/2022/02/navch_pos_perehuda.pdf
  34. Kosmin, V. V. (2007). Osnovy nauchnyh issledovaniy. Moscow, 271.
  35. Siasiev, A. V. (2004). Vstup do systemy MathCad. Dnipropetrovsk, 108. Available at: https://library_donetsk19.donetskedu.com/uk/library/vstup-do-sistemi-mathcad-navchalnii-posibnik.html
  36. Fomin, O., Lovska, A., Khara, M., Nikolaienko, I., Lytvynenko, A., Sova, S. (2022). Adapting the load-bearing structure of a gondola car for transporting high-temperature cargoes. Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.253770
  37. DSTU 7598:2014. Freight wagons. General reguirements to calculation and designing of the new and modernized 1520 mm gauge wagons (non-self-propelled) (2015). Kyiv, 162.
  38. EN 12663-2. Railway applications - structural requirements of railway vehicle bodies - Part 2: Freight wagons (2010).
  39. Technical specification for steel dry cargo container 20’x8’x8’6’’ ISO 1CC type specification NO: “CTX 20 DVDR – Domestic Spec. HH“ (2013). Available at: https://www.containi.de/pdf/Technische-Beschreibung-Seecontainer.pdf
  40. Bohach, I. V., Krakovetskyi, O. Yu., Kylyk, L. V. (2020). Chyselni metody rozviazannia dyferentsialnykh rivnian zasobamy MathCad. Vinnytsia, 106. Available at: http://pdf.lib.vntu.edu.ua/books/IRVC/Bogach_2020_106.pdf
  41. Sobolenko, O. V., Petrechuk, L. M., Ivashchenko, Yu. S., Yehortseva, Ye. Ye. (2020). Metody rishennia matematychnykh zadach u seredovyshchi Mathcad. Dnipro, 60. Available at: https://nmetau.edu.ua/file/navch_posibn_mathcad_2020_petrechuk.pdf
Revealing the effect of structural components made of sandwich panels on loading the container transported by railroad

Downloads

Published

2023-02-28

How to Cite

Vatulia, G., Lovska, A., Myamlin, S., Stanovska, I., Holofieieva, M., Horobets, V., Nerubatskyi, V., & Krasnokutskyi, Y. (2023). Revealing the effect of structural components made of sandwich panels on loading the container transported by railroad. Eastern-European Journal of Enterprise Technologies, 1(7 (121), 48–56. https://doi.org/10.15587/1729-4061.2023.272316

Issue

Section

Applied mechanics