Revealing the effect of structural components made of sandwich panels on loading the container transported by railroad
DOI:
https://doi.org/10.15587/1729-4061.2023.272316Keywords:
ISO container, sandwich panel, dynamic container load, container strength, container transportationAbstract
The object of this study is the processes of emergence, perception, and redistribution of loads in the supporting structure of a 1CC size container with end walls made of sandwich panels.
To reduce the longitudinal load of the container under operational modes, the introduction of sandwich panels into its design is proposed. This solution is implemented on the example of its end walls as the most loaded component of the body in operation.
The thickness of the sandwich panel sheet was determined, provided that the strength in operation is ensured. Mathematical modeling of dynamic load of a container with end walls made of sandwich panels placed on a platform car during shunting co-impact was carried out. It was established that taking into account the proposed improvement makes it possible to reduce the dynamic loads that the container perceives by 10 % compared to the typical structure. The results were confirmed by computer simulation of the dynamic load of the container. The models formed within the framework of the study were verified according to the F-criterion.
The results of calculations for the strength of the container showed that the stresses in its structure are 15 % lower than those in the typical one.
A feature of the findings is that the proposed improvement of the container helps improve its strength in operation by reducing the loads acting on it.
The scope of practical use of the results is the engineering industry, namely, railroad transport. At the same time, the conditions for the practical application of the research results are the introduction of energy-absorbing material as a component of the sandwich panel.
This study will contribute to devising recommendations for designing modern structures of vehicles of a modular type and for improving the efficiency of the transport industry
References
- Qin, S., Zhong, Y., Yang, X., Zhao, M. (2008). Optimization and static strength test of carbody of light rail vehicle. Journal of Central South University of Technology, 15 (S2), 288–292. doi: https://doi.org/10.1007/s11771-008-0473-1
- Vatulia, G., Lovska, A., Pavliuchenkov, M., Nerubatskyi, V., Okorokov, A., Hordiienko, D. et al. (2022). Determining patterns of vertical load on the prototype of a removable module for long-size cargoes. Eastern-European Journal of Enterprise Technologies, 6 (7 (120)), 21–29. doi: https://doi.org/10.15587/1729-4061.2022.266855
- Nerubatskyi, V., Plakhtii, O., Hordiienko, D. (2021). Control and Accounting of Parameters of Electricity Consumption in Distribution Networks. 2021 XXXI International Scientific Symposium Metrology and Metrology Assurance (MMA). doi: https://doi.org/10.1109/mma52675.2021.9610907
- Nerubatskyi, V., Plakhtii, O., Hordiienko, D. (2022). Adaptive Modulation Frequency Selection System in Power Active Filter. 2022 IEEE 8th International Conference on Energy Smart Systems (ESS). doi: https://doi.org/10.1109/ess57819.2022.9969261
- Shah, K. J., Pan, S.-Y., Lee, I., Kim, H., You, Z., Zheng, J.-M., Chiang, P.-C. (2021). Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. Journal of Cleaner Production, 326, 129392. doi: https://doi.org/10.1016/j.jclepro.2021.129392
- Abdel Wahed Ahmed, M. M., Abd El Monem, N. (2020). Sustainable and green transportation for better quality of life case study greater Cairo – Egypt. HBRC Journal, 16 (1), 17–37. doi: https://doi.org/10.1080/16874048.2020.1719340
- Giriunas, K., Sezen, H., Dupaix, R. B. (2012). Evaluation, modeling, and analysis of shipping container building structures. Engineering Structures, 43, 48–57. doi: https://doi.org/10.1016/j.engstruct.2012.05.001
- Rzeczycki, A., Wiśnicki, B. (2016). Strength Analysis of Shipping Container Floor with Gooseneck Tunnel under Heavy Cargo Load. Solid State Phenomena, 252, 81–90. doi: https://doi.org/10.4028/www.scientific.net/ssp.252.81
- Ibragimov, N. N., Rahimov, R. V., Hadzhimuhamedova, M. A. (2015). Razrabotka konstruktsii konteynera dlya perevozki plodoovoschnoy produktsii. Molodoy ucheniy, 21 (101), 168–173. Available at: https://webcache.googleusercontent.com/search?q=cache:VT3ot930WMwJ:https://moluch.ru/archive/101/22929/&cd=1&hl=ru&ct=clnk&gl=ua
- Fomin, O., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Determination of the Loading of a Flat Rack Container during Operating Modes. Applied Sciences, 11 (16), 7623. doi: https://doi.org/10.3390/app11167623
- Płaczek, M., Wróbel, A., Olesiejuk, M. (2017). Modelling and arrangement of composite panels in modernized freight cars. MATEC Web of Conferences, 112, 06022. doi: https://doi.org/10.1051/matecconf/201711206022
- Chuan-jin, O., Bing-tao, L. (2020). Research and application of new multimodal transport equipment-swap bodies in China. E3S Web of Conferences, 145, 02001. doi: https://doi.org/10.1051/e3sconf/202014502001
- Wróbel, A., Płaczek, M., Buchacz, A. (2017). An Endurance Test of Composite Panels. Solid State Phenomena, 260, 241–248. doi: https://doi.org/10.4028/www.scientific.net/ssp.260.241
- Fomin, O., Gorbunov, M., Gerlici, J., Vatulia, G., Lovska, A., Kravchenko, K. (2021). Research into the Strength of an Open Wagon with Double Sidewalls Filled with Aluminium Foam. Materials, 14 (12), 3420. doi: https://doi.org/10.3390/ma14123420
- Al-Sukhon, A., ElSayed, M. S. (2021). Design optimization of hopper cars employing functionally graded honeycomb sandwich panels. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 236 (8), 920–935. doi: https://doi.org/10.1177/09544097211049640
- Bezuhov, N. I. (1957). Sbornik zadach po teorii upru gosti i plastichnosti. Moscow: Gosudartvennoe izdatel'stvo tekhniko-teoreticheskoy literatury, 286.
- Lovskaya, A., Ryibin, A. (2016). The study of dynamic load on a wagon–platform at a shunting collision. Eastern-European Journal of Enterprise Technologies, 3 (7 (81)), 4–8. doi: https://doi.org/10.15587/1729-4061.2016.72054
- Lovska, A. (2014). Assessment of dynamic efforts to bodies of wagons at transportation with railway ferries. Eastern-European Journal of Enterprise Technologies, 3 (4 (69)), 36–41. doi: https://doi.org/10.15587/1729-4061.2014.24997
- Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
- Nalapko, O., Shyshatskyi, A., Ostapchuk, V., Mahdi, Q. A., Zhyvotovskyi, R., Petruk, S. et al. (2021). Development of a method of adaptive control of military radio network parameters. Eastern-European Journal of Enterprise Technologies, 1 (9 (109)), 18–32. doi: https://doi.org/10.15587/1729-4061.2021.225331
- Panchenko, S., Vatulia, G., Lovska, A., Ravlyuk, V., Elyazov, I., Huseynov, I. (2022). Influence of structural solutions of an improved brake cylinder of a freight car of railway transport on its load in operation. EUREKA: Physics and Engineering, 6, 45–55. doi: https://doi.org/10.21303/2461-4262.2022.002638
- Zadachyn, V. M., Koniushenko, I. H. (2014). Chyselni metody. Kharkiv, 180. Available at: http://kist.ntu.edu.ua/textPhD/CHM_Zadachin.pdf
- Hoi, T. P., Makhnei, O. V. (2012). Dyferentsialni rivniannia. Ivano-Frankivsk, 352. Available at: https://kdrpm.pnu.edu.ua/wp-content/uploads/sites/55/2018/03/deinf_el.pdf
- Stoilov, V., Simić, G., Purgić, S., Milković, D., Slavchev, S., Radulović, S., Maznichki, V. (2019). Comparative analysis of the results of theoretical and experimental studies of freight wagon Sdggmrss-twin. IOP Conference Series: Materials Science and Engineering, 664 (1), 012026. doi: https://doi.org/10.1088/1757-899x/664/1/012026
- Lovska, A., Stanovska, I., Nerubatskyi, V., Hordiienko, D., Zinchenko, O., Karpenko, N., Semenenko, Y. (2022). Determining features of the stressed state of a passenger car frame with an energy-absorbing material in the girder beam. Eastern-European Journal of Enterprise Technologies, 5 (7 (119)), 44–53. doi: https://doi.org/10.15587/1729-4061.2022.265043
- Panchenko, S., Gerlici, J., Vatulia, G., Lovska, A., Pavliuchenkov, M., Kravchenko, K. (2022). The Analysis of the Loading and the Strength of the FLAT RACK Removable Module with Viscoelastic Bonds in the Fittings. Applied Sciences, 13 (1), 79. doi: https://doi.org/10.3390/app13010079
- Fomin, O., Lovska, A. (2021). Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 6–14. doi: https://doi.org/10.15587/1729-4061.2021.220534
- Fang, Z., Han, M. (2014). Strength Analysis of the Railway Truck Body Based on ANSYS. Applied Mechanics and Materials, 615, 329–334. doi: https://doi.org/10.4028/www.scientific.net/amm.615.329
- Buchacz, A., Baier, A., Płaczek, M., Herbuś, K., Ociepka, P., Majzner, M. (2018). Development and analysis of a new technology of freight cars modernization. Journal of Vibroengineering, 20 (8), 2978–2997. doi: https://doi.org/10.21595/jve.2018.19206
- Rudenko, V. M. (2012). Matematichna statistika. Kyiv, 304. Available at: https://westudents.com.ua/knigi/578-matematichna-statistika-rudenko-vm.html
- Kobzar', A. I. (2006). Prikladnaya matematicheskaya statistika. Moscow, 816. Available at: https://www.at.alleng.org/d/math/math369.htm
- Melnychenko, O. P., Yakymenko, I. L., Shevchenko, R. L. (2006). Statystychna obrobka eksperymentalnykh danykh. Bila Tserkva, 35. Available at: https://teta.at.ua/Metodichka/mat_statustuka.pdf
- Perehuda, O. V., Kapustian, O. A., Kurylko, O. B. (2022). Statystychna obrobka danykh. Kyiv, 103. Available at: http://www.mechmat.univ.kiev.ua/wp-content/uploads/2022/02/navch_pos_perehuda.pdf
- Kosmin, V. V. (2007). Osnovy nauchnyh issledovaniy. Moscow, 271.
- Siasiev, A. V. (2004). Vstup do systemy MathCad. Dnipropetrovsk, 108. Available at: https://library_donetsk19.donetskedu.com/uk/library/vstup-do-sistemi-mathcad-navchalnii-posibnik.html
- Fomin, O., Lovska, A., Khara, M., Nikolaienko, I., Lytvynenko, A., Sova, S. (2022). Adapting the load-bearing structure of a gondola car for transporting high-temperature cargoes. Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.253770
- DSTU 7598:2014. Freight wagons. General reguirements to calculation and designing of the new and modernized 1520 mm gauge wagons (non-self-propelled) (2015). Kyiv, 162.
- EN 12663-2. Railway applications - structural requirements of railway vehicle bodies - Part 2: Freight wagons (2010).
- Technical specification for steel dry cargo container 20’x8’x8’6’’ ISO 1CC type specification NO: “CTX 20 DVDR – Domestic Spec. HH“ (2013). Available at: https://www.containi.de/pdf/Technische-Beschreibung-Seecontainer.pdf
- Bohach, I. V., Krakovetskyi, O. Yu., Kylyk, L. V. (2020). Chyselni metody rozviazannia dyferentsialnykh rivnian zasobamy MathCad. Vinnytsia, 106. Available at: http://pdf.lib.vntu.edu.ua/books/IRVC/Bogach_2020_106.pdf
- Sobolenko, O. V., Petrechuk, L. M., Ivashchenko, Yu. S., Yehortseva, Ye. Ye. (2020). Metody rishennia matematychnykh zadach u seredovyshchi Mathcad. Dnipro, 60. Available at: https://nmetau.edu.ua/file/navch_posibn_mathcad_2020_petrechuk.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Glib Vatulia, Alyona Lovska, Sergiy Myamlin, Iraida Stanovska, Maryna Holofieieva, Volodymyr Horobets, Volodymyr Nerubatskyi, Yevhen Krasnokutskyi
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.