Preparation and characterization of iron complexes based on polysaccharides from agaricus bisporus

Authors

  • Natalya Cherno Odessa National Academy of Food Technologies Str. Kanatnya 112, Odessa, Ukraine, 65039, Ukraine
  • Sophya Osolina Odessa National Academy of Food Technologies Str. Kanatnya 112, Odessa, Ukraine, 65039, Ukraine
  • Olexandra Nikitina Odessa National Academy of Food Technologies Str. Kanatnya 112, Odessa, Ukraine, 65039, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.27614

Keywords:

complex, iron, polysaccharide, glucan, Agaricus Bisporus, iron deficiency, anemia, immunomodulator

Abstract

According to WHO, correction and prevention of iron deficiency are one of the global problems of mankind. Under these conditions, the immune response dysfunction develops. Therefore, for the prevention and correction of iron deficiency it is advisable to use drugs and dietary supplements that combine antianaemia and immunomodulatory properties.

This problem can be solved by preparing iron complexes based on polysaccharides of mushroom (Agaricus bisporus), in which β–(1→3)/(1→6)–D–glucans – active immunomodulators predominate.

Complexes were prepared by mixing polysaccharide solution, separated from mushroom and ferric (III) chloride solution when heating. The pH value was adjusted by adding concentrated alkali solution. The mass ratio of iron: polysaccharides was varied from 1:0.25 to 1:3.00 by changing the polysaccharide solution concentration from 0.019 to 0.230 %.

The possibility of preparing soluble iron complexes based on mushroom polysaccharides was shown. It was found that their yield and composition depend on the process conditions. The maximum yields of complexes with a high iron content can be obtained at a mass ratio of the inorganic and organic components of 1:1.0 at pH=12.0 and 1:2.5 at pH=8.5.

Using IR and UV spectroscopy, gel filtration chromatography it was confirmed that the resulting products are nanosized complexes of polycyclic ferric hydroxide and mushroom polysaccharides. It is possible to predict the polyfunctional effects of produced iron complexes – along with antianemic, they can exhibit immunomodulatory activity.

In Ukraine, analogs of such drugs are currently unknown, their further comprehensive study is of interest for both Nutritiology and Medicine.

Author Biographies

Natalya Cherno, Odessa National Academy of Food Technologies Str. Kanatnya 112, Odessa, Ukraine, 65039

Professor, Doctor of technical sciences, head of the department

The department of food chemistry

Sophya Osolina, Odessa National Academy of Food Technologies Str. Kanatnya 112, Odessa, Ukraine, 65039

Associate professor, Candidate of chemical science

The department of food chemistry

Olexandra Nikitina, Odessa National Academy of Food Technologies Str. Kanatnya 112, Odessa, Ukraine, 65039

Junior scientific researcher

The problem research laboratory

References

  1. Nielsen, F. H. (2000). Importance of making dietary recommendations for elements designated as nutritionally beneficial, pharmacologically beneficial, or conditionally essential. J. Trace Elem. Exp. Med., 13, 113–129. http://dx.doi.org/10.1002/(sici)1520-670x(2000)13:1<113::aid-jtra13>3.3.co;2-4
  2. Soetan, K. O., Olaiya, C. O., Oyewole, O. E. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Science, 4 (5), 200–222.
  3. Beaumont, C. (2004). Molecular mechanisms of iron homeostasis. Med. Sci., 20(1), 68–72. http://dx.doi.org/10.1051/medsci/200420168
  4. Beard, J. L. (2001). Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr., 131, 5685–5695.
  5. Aisen, P., Enns, C., Wessling-Resnick, M. (2001). Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol., 33, 940–959. http://dx.doi.org/10.1016/S1357-2725(01)00063-2
  6. Crichton, R. (2001). Inorganic Biochemistry of Iron Metabolism: From Molecular Mechanisms to Clinical Consequences. 2nd ed., NJ, John Wiley & Sons, 319.
  7. Bernoist, B., McLean, E., Egli, I., Cogswell, M. (2008). Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia. Geneva: World Health Organization, 41.
  8. Milman, N. (2011). Anemia–still a major health problem in many parts of the world. Ann. Hematol., 90, 369–377. http://dx.doi.org/10.1007/s00277-010-1144-5
  9. Miret, S., Simpson, R. J., McKie, A. T. (2003). Physiology and molecular biology of dietary iron absorption. An. Rev. Nutr., 23, 283–301. http://dx.doi.org/10.1146/annurev.nutr.23.011702.073139
  10. Geisser, P., Burckhardt, S. (2011). The pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics., 3, 12–33. http://dx.doi.org/10.3390/pharmaceutics3010012
  11. Geisser, P. (2007). Safety and efficacy of iron(III)-hydroxide polymaltose complex / a review of over 25 years experience. Arzneimittelforschung, 57 (6A), 439–452. http://dx.doi.org/10.1055/s-0031-1296693
  12. Ortiz, R., Toblli, J. E., Romero, J. D. (2011). Efficacy and safety of oral iron (III) polymaltose complex versus ferrous sulfate in pregnant women with iron-deficiency anemia: a multicenter, randomized, controlled study. J. Mat.-Fetal. Neonatal. Med., 24 (11), 1–6. http://dx.doi.org/10.3109/14767058.2011.599080
  13. Hutchinson, C., Al-Ashgar, W. D., Liu, Y., Hider, R. C. (2004). Oral ferrous sulphate leads to a marked increase in pro-oxidant nontransferrin-bound iron. E. J. Clin. Inv., 34 (11), 782–784. http://dx.doi.org/10.1111/j.1365-2362.2004.01416.x
  14. Dresow, B., Petersen, D., Fischer, R., Nielsen, P. (2008). Nontransferrin-bound iron in plasma following administration of oral iron drugs. BioMetals, 21 (3), 273–276. http://dx.doi.org/10.1007/s10534-007-9116-5
  15. Cakic, M., Nikolic, G. (2007). Physical investigations of colloidal iron–inulin complex. Col. J., 69 (4), 501–509. http://dx.doi.org/10.1134/S1061933X07040084
  16. Medvedeva, S. A., Aleksandrova, G. P., Grishhenko, L. A., Tjukavkina, N. A. (2002). Sintez zhelezo(II,III)soderzhashhih proizvodnyh arabinogalaktana. Zhurnal obshhej himii, 9, 1569–1573.
  17. Coe, E. M., Bereman, R. D., Monte, W. T. (1995). An investigation into the size of an iron dextran complex. Biochem., 60, 149–153. http://dx.doi.org/10.1016/0162-0134(95)00016-h
  18. Toblli, E., Brignoli, R. (2007). Iron(III)-hydroxide polymaltose complex in iron deficiency anemia: review and meta-analysis. Drug Res., 57 (6A), 431–438. http://dx.doi.org/10.1055/s-0031-1296692
  19. Jacobs, P., Wood, L., Bird, A. R. (2000). Better tolerance of iron polymaltose complex compared with ferrous sulphate in the treatment of anaemia. Hematol., 5 (1), 77–83.
  20. Yasa, B., Agaoglu, L., Unuvar, E. (2011). Efficacy, tolerability, and acceptability of iron hydroxide polymaltose complex versus ferrous sulfate: a randomized trial. Int. J. Pediat., 1, 1–6. http://dx.doi.org/10.1155/2011/524520
  21. Wasser, S. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol., 60, 258–274. http://dx.doi.org/10.1007/s00253-002-1076-7
  22. Villares, A., Mateo-Vivaracho, L., Guillamon, E. (2012). Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture, 2, 452–471. http://dx.doi.org/10.3390/agriculture2040452
  23. Chung, C., Nickerson, W. (1954). Polysaccharide synthesis in growing yeast. J. Biol. Chem., 208, 395–407.
  24. Darbre, A. (1986). Practical protein chemistry. NJ, John Wiley, 620.
  25. Laine, R., Esselman, W., Sweely, C. (1972). Gas-liquid chromatography of carbohydrates. Methods Enzymol., 18, 156–167. http://dx.doi.org/10.1016/0076-6879(72)28012-0
  26. Mophan, N., Vinitnantharat, S., Somsook, E. (2010). Enhancing iron (III) solubility using cassava and arrowroot starch. ScienceAsia, 36, 172–173. http://dx.doi.org/10.2306/scienceasia1513-1874.2010.36.172
  27. Striegel, A., Yau, W. W., Kirkland, J. J., Bly, D. D. (2009). Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography. 2nd ed., NJ, John Wiley & Sons, 494. http://dx.doi.org/10.1002/9780470442876.ch8
  28. Somsook, E., Hinsin, D., Buakhrong, P., Teanchai, R. (2005). Interactions between iron (III) and sucrose, dextran, or starch in complexes. Carbohydr. Polymer., 61, 281–287. http://dx.doi.org/10.1016/j.carbpol.2005.04.019
  29. Nikolic, G., Cakic, M., Lli, L., Ristic, S., Cakic, Z. (2002). Synthesis of some new antianemics I. Iron pullulan complexes of pharmaceutical interest. Pharmazie, 57 (3), 155–158.
  30. Cakic, M., Nikolic, G., Llic, L. (2002). FTIR spectra of iron (III) complexes with dextran, pullulan and inulin oligomers. Bull. Chem. and Techn. Macedonia, 21(2), 135–146.
  31. Kudasheva, D. S., Lai, J., Ulman, A., Cowman, M. K. (2004). Structure of carbohydrate-bound polynuclear iron oxyhydroxide nanoparticles in parenteral formulations. J. Inorg. Biochem., 98, 1757–1769. http://dx.doi.org/10.1016/j.jinorgbio.2004.06.010

Published

2014-10-17

How to Cite

Cherno, N., Osolina, S., & Nikitina, O. (2014). Preparation and characterization of iron complexes based on polysaccharides from agaricus bisporus. Eastern-European Journal of Enterprise Technologies, 5(11(71), 52–57. https://doi.org/10.15587/1729-4061.2014.27614

Issue

Section

Technology and Equipment of Food Production