Modeling of the stress-strain state of layered orthotropic plates on elastic foundation

Authors

  • Сергій Вікторович Угрімов A.N. Podgorny Institute for Mechanical Engineering Problems, National Academy of Sciences of Ukraine, Str. Dm. Pozharsky 2/10, Kharkiv, Ukraine, 61046, Ukraine
  • Юрій Михайлович Toрмосов Kharkiv State University of Food Technology and Trade Str. Klochkivska, 333,, Kharkiv, Ukraine, 61051, Ukraine
  • Віктор Анатолійович Куценко Kharkiv State University of Food Technology and Trade Str. Klochkivska, 333,, Kharkiv, Ukraine, 61051, Ukraine
  • Ігор Володимирович Лебединець Kharkiv State University of Food Technology and Trade Str. Klochkivska, 333,, Kharkiv, Ukraine, 61051, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.27632

Keywords:

layered plate, orthotropy, elastic foundation, stress-strain state, statics

Abstract

The problem of the analysis of the stress-strain state of hinged layered plates on elastic foundation is considered.  Bending of the layered plate on the Pasternak foundation at its mechanical loading is investigated. Original two-dimensional discrete-structural generalized theory of multi-layered plates is used to study the orthotropic plate bending. This theory is based on developing the displacement vector components of each layer in the power series along transverse coordinate. It allows to calculate displacement and stress tensor components of each layer with the required accuracy.

The possibilities of the proposed approach are demonstrated on the examples of studying the response of layered plates on elastic foundation. The reliability of the results, obtained on its basis is determined through comparison with the data, presented in known scientific publications. The effect of the elastic foundation parameters on the stress-strain state of multi-layer structures is investigated. It was found that with an increase in the number of power series terms, displacement and stress demonstrate good convergence. It is shown that the elastic foundation shear stiffness significantly affects the stress-strain state of the hinged layered plates.

Author Biographies

Сергій Вікторович Угрімов, A.N. Podgorny Institute for Mechanical Engineering Problems, National Academy of Sciences of Ukraine, Str. Dm. Pozharsky 2/10, Kharkiv, Ukraine, 61046

Senior researcher, Candidate of technical science, Doctoral student

Юрій Михайлович Toрмосов, Kharkiv State University of Food Technology and Trade Str. Klochkivska, 333,, Kharkiv, Ukraine, 61051

Professor, Doctor of technical sciences,  head of the department

Віктор Анатолійович Куценко, Kharkiv State University of Food Technology and Trade Str. Klochkivska, 333,, Kharkiv, Ukraine, 61051

Associate professor, Candidate of technical science

Ігор Володимирович Лебединець, Kharkiv State University of Food Technology and Trade Str. Klochkivska, 333,, Kharkiv, Ukraine, 61051

Associate professor, Candidate of technical science

References

  1. Vlasov, V. Z, Leontiev, N. N (1960). Beams, plates and shells on elastic foundation. Moscow: Fizmatgiz, 490.

    Pasternak, P. L. (1954). New method calculation for flexible substructures on two parameter elastic foundation. Мoscow: Gosstroizdat, 56.

    Kerr, A. D. (1964). Elastic and viscoelastic foundation models. Trans. ASME. J. Appl. Mech., 31 (3), 491–498. http://dx.doi.org/10.1115/1.3629667

    Grygoliuk, E. I, Chulkov, P. P. (1999). Statics of elastic layered shells. Moscow: RDI of Mechanics of Moscow State University, 215.

    Chen, W., Wu, Z. (2008). A selective review on recent development of displacement-based laminated plate theories. Recent patents on mechanical engineering, 1 (1), 29–44. http://dx.doi.org/10.2174/2212797610801010029

    Matsunaga, H. (2002). Assessment of a global higher-order deformation theory for laminated composite and sandwich plates. Journal of composite materials, 56 (3), 279–291. http://dx.doi.org/10.1016/S0263-8223(02)00013-2

    Grigoliuk, E. I., Chulkov, P. P. (1964) The theory viscoelasticity of multilayer shells with rigid filler at finite deflections. Prikladnaya Mekhanika i Tehnicheskaya Fizika [J of Applied Mechanics and Technical Physics], 5, 109–117.

    Reddy, J. N. (2004). Mechanics of laminated composite plates and shells. Theory and analysis. New York: CRC Press, 832.

    Pagano, N. J. (1970). Exact solutions for rectangular bidirectional composites and sandwich plates. Journal of composite materials, 4, 20–34. http://dx.doi.org/10.1177/002199837000400102

    Ugrimov, S. V. (2002). Generalized theory of multilayer plates. International J. Solids and Structures, 39 (4), 819–839.

    Zenkour, A. M. (2011) Bending of orthotropic plates resting on Pasternak’s foundations using mixed shear deformation theory. Acta Mechanica Sinica, 27(6), 956–962. http://dx.doi.org/10.1007/s10409-011-0515-z

    Akavci, S. S., Yerli, H. R., Dogan, A. (2007). The first order shear deformation theory for symmetrically laminated composite plates on elastic foundation. The Arabian Journal for Science and Engineering, 32 (2B), 341–348.

    Shupikov, A. N., Buzko, Ya. P., Smetankina, N. V., Ugrimov, S. V. (2004). Non-stationary vibrations of laminated plates and shells and their optimization, Kharkov: KhNUE, 252.

    Shupikov, A. N., Ugrimov, S. V., Kolodiazhny, A. V., Yareschenko, V. G. (1998). High-order theory of multilayer plates. The impact problem. International J. Solids and Structures, 35 (25), 3391–3403. http://dx.doi.org/10.1016/s0020-7683(98)00020-1

    Rasskazov, A. O., Sokolovskaya, I. I., Shul'ga, N. A. (1986). Theory and design of layered orthotropic plates and shells. Kyiv: Vyshcha Shkola Publishers; 191.

Published

2014-10-20

How to Cite

Угрімов, С. В., Toрмосов Ю. М., Куценко, В. А., & Лебединець, І. В. (2014). Modeling of the stress-strain state of layered orthotropic plates on elastic foundation. Eastern-European Journal of Enterprise Technologies, 5(7(71), 4–9. https://doi.org/10.15587/1729-4061.2014.27632

Issue

Section

Applied mechanics