Improving empirical models of complex technological objects under conditions of uncertainty

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.276586

Keywords:

empirical model, membership function, function approximation, fuzzy numbers, genetic algorithm

Abstract

This paper proposes a method for improving empirical models of complex technological objects with insufficient information about the input and output values of an object's parameters. It has been established that most methods for constructing empirical models require knowledge of the statistical characteristics of the input and output values of an object. When modeling complex non-reproducible stochastic processes that evolve over time, information about the parameters and structure of an object is usually not available. A method has been proposed where input and output values are treated as fuzzy quantities with a triangular membership function. Since at some points in the region, the triangular membership function is undifferentiated, it is inconvenient to use it in its typical form to solve the problem of optimal control. Therefore, it is proposed to approximate it with the Gaussian membership function. It is shown that such an approximation is reduced to finding one parameter, which is determined by the least squares method. Its value practically does not depend on the magnitude of the uncertainty interval while the value characterizing the accuracy of approximation is a monotonously increasing function that has a linear character. This makes it possible to define the main operations on fuzzy numbers and derive an empirical model for the case of a polynomial "base" model. The resulting model is linear in its parameters, so a genetic algorithm can be used to find them. It is shown that genetic algorithms can be used in the construction of empirical polynomial models when input parameters are interpreted as fuzzy numbers.

Thus, it can be argued that when constructing an empirical model of an object that is affected by external disturbances that cannot be measured, it is advisable to approximate all input quantities with a triangular Gaussian membership function

Author Biographies

Mykhail Gorbiychuk, Ivano-Frankivsk National Technical University of Oil and Gas

Doctor of Technical Sciences, Professor

Department of Automation and Computer-Integrated Technology

Dmytro Kropyvnytskyi, Ivano-Frankivsk National Technical University of Oil and Gas

Postgraduate Student

Department of Automation and Computer-Integrated Technology

Vitalia Kropyvnytska, Ivano-Frankivsk National Technical University of Oil and Gas

PhD, Associate Professor

Department of Computer Systems and Networks

References

  1. Syniehlazov, V. M., Silvestrov, A. M. (2015). Teoriya identyfikatsiyi. Kyiv: NAU, 471.
  2. Bidiuk, P. I., Kalinina, I. O., Hozhyi, O. P. (2021). Baiesivskyi analiz danykh. Kherson: Knyzhkove vydavnytstvo FOP Vyshemyrskyi V. S., 208.
  3. Čížek, P., Sadıkoğlu, S. (2020). Robust nonparametric regression: A review. WIREs Computational Statistics, 12 (3), e1492. doi: https://doi.org/10.1002/wics.1492
  4. Hable, R., Christmann, A. (2011). On qualitative robustness of support vector machines. Journal of Multivariate Analysis, 102 (6), 993–1007. doi: https://doi.org/10.1016/j.jmva.2011.01.009
  5. Draper, N., Smith, H. (1998). Applied Regression Analysis. Wiley. 2016. 736.
  6. Chen, F., Chen, Y., Zhou, J., Liu, Y. (2016). Optimizing h value for fuzzy linear regression with asymmetric triangular fuzzy coefficients. Engineering Applications of Artificial Intelligence, 47, 16–24. doi: https://doi.org/10.1016/j.engappai.2015.02.011
  7. Raskin, L., Sira, O., Ivanchykhin, Y. (2017). Models and methods of regression analysis under conditions of fuzzy initial data. Eastern-European Journal of Enterprise Technologies, 4 (4 (88), 12–19. doi: https://doi.org/10.15587/1729-4061.2017.107536
  8. Muzzioli, S., Ruggieri, A., De Baets, B. (2015). A comparison of fuzzy regression methods for the estimation of the implied volatility smile function. Fuzzy Sets and Systems, 266, 131–143. doi: doi: https://doi.org/10.1016/j.fss.2014.11.015
  9. Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: https://doi.org/10.1615/jautomatinfscien.v44.i7.40
  10. Domin, D. (2013). Application of artificial orthogonalization in search for optimal control of technological processes under uncertainty. Eastern-European Journal of Enterprise Technologies, 5 (9 (65)), 45–53. doi: https://doi.org/10.15587/1729-4061.2013.18452
  11. Ivakhnenko, A. G. (1981). Induktivniy metod samoorganizatsii modeley slozhnykh sistem. Kyiv: Naukova dumka, 286.
  12. Gorbiychuk, M., Medvedchuk, V., Pashkovskyi, B. (2014). The parallelism in the algorithm of the synthesis of models of optimal complexity based on the genetic algorithms. Eastern-European Journal of Enterprise Technologies, 4 (2 (70)), 42–48. doi: https://doi.org/10.15587/1729-4061.2014.26305
  13. Raskin, L. G., Seraya, O. V., Volovschikov, V. Yu. (2016). Nechetkaya matematika. Kharki: NTU «KhPI», 203.
  14. Ihnatkin, V. U. et al. (2019). Matematychne zabezpechennia tekhnichnykh zasobiv vymiriuvannia i kontroliu. Dnipro: TOV «Favor LTD», 339.
  15. Verzhbitskiy, V. M. (2021). Osnovy chislennykh metodov. Moscow-Berlin: Direkt-Media. doi: https://doi.org/10.18720/SPBPU/2/ek21-2
  16. Yaroshenko, O. I., Hryhorkiv, M. V. (2018). Chyslovi metody. Chernivtsi: Chernivetskyi nats. un-t, 172.
  17. Dykha, M. V., Moroz, V. S. (2016). Ekonometriya. Kyiv: Tsentr navchalnoi literatury, 206.
  18. Horbiychuk, M. I., Skripka, O. A., Pashkovskyi, B. V. (2016). Optymalnyi rozpodil kilkosti hazoperekachuvalnykh ahrehativ v umovakh nevyznachenosti pry zadanykh obsiahakh na perekachku pryrodnoho hazu. East European Scientific Journal, 2 (3 (7)), 53–58.
  19. Gorbiychuk, M., Pashkovskyi, B., Moyseenko, O., Sabat, N. (2017). Solution of the optimization problem on the control over operation of gas pumping units under fuzzy conditions. Eastern-European Journal of Enterprise Technologies, 5 (2 (89)), 65–71. doi: https://doi.org/10.15587/1729-4061.2017.111349
  20. Dranyshnykov, L. V. (2018). Intelektualni metody v upravlinni. Kamianske: DDTU, 416.
  21. Gorbiychuk, M. I., Humenyuk, T. V. (2016). Synthesis Method of Empirical Models Optimal by Complexity under Uncertainty Conditions. Journal of Automation and Information Sciences, 48 (9), 64–74. doi: https://doi.org/10.1615/jautomatinfscien.v48.i9.50
  22. Oliynyk, A. P., Subbotin, S. O., Oliynyk, O. O. (2012). Intelektualnyi analikh danykh. Zaporizhzhia: ZNTU, 277.
  23. SOU 60.3-30019801-011:2004. Kompresorni stantsiyi. Kontrol teplotekhnichnykh ta ekolohichnykh kharakterystyk hazoperekachuvalnykh ahrehativ. Kyiv: DK Ukrtranshaz, 117.
Improving empirical models of complex technological objects under conditions of uncertainty

Downloads

Published

2023-04-17

How to Cite

Gorbiychuk, M., Kropyvnytskyi, D., & Kropyvnytska, V. (2023). Improving empirical models of complex technological objects under conditions of uncertainty. Eastern-European Journal of Enterprise Technologies, 2(2 (122), 53–63. https://doi.org/10.15587/1729-4061.2023.276586