Quantum-chemical research of the reaction mechanism of [4+2]-cycloaddition of 2,3-dimethylbuta-1,3-dien and allylmethacrylate

Authors

  • Ярослав Петрович Ковальский National university Lviv Polytechnic Ukraine, Lviv 79013 str. S.Bandery, 12, Ukraine
  • Ирина Светозаровна Костив Institute of chemistry and chemical technologies National university Lviv Polytechnic str. S.Bandery, 12, Lviv, Ukraine,79013, Ukraine https://orcid.org/0000-0002-8573-6732
  • Ольга Игоревна Маршалок Institute of chemistry and chemical technologies National university Lviv Polytechnic str. S.Bandery, 12, Lviv, Ukraine,79013, Ukraine
  • Галина Олексеевна Маршалок Institute of chemistry and chemical technologies National university Lviv Polytechnic str. S.Bandery, 12, Lviv, Ukraine,79013, Ukraine
  • Игорь Юрьевич Пыриг Lviv medical institute str. Polishuka, 76, Lviv, Ukraine, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.27665

Keywords:

2, 3-Dimethylbuta-1, 3-diene, Allyl methacrylate, allyl-1, 3, 4-trymethylcyclohex-3encarboxylate, MOPAC2009, RM1

Abstract

The mechanism of the [4+2]-cycloaddition reaction of 2,3dimethylbuta-1,3-diene and allyl methacrylate was studied by the quantum-chemical modelling using a semi-empirical programme of MOPAC2009 by the RM1 method. The quantum-chemical calculations allowed analyzing the qualitative sides of the reaction.

It was found that the interaction of 2,3dimethylbuta-1,3-diene and allyl methacrylate has a stepwise mechanism with the formation of an intermediate with an open electron shell, not a synchronous mechanism with a closed electron shell. The end product molecule − allyl-1,3,4-trymethylcyclohex-3-encarboxylate has a semi-armchair form in which a carboxylate group is in the endo-position to a cyclohexene ring. The molecule structure also indicates that the interaction of 2,3dimethylbuta-1,3-diene and allyl methacrylate is agreed by the stepwise mechanism with a disrotatory cycle closure in the second step.

The compliance of the experimental data with the activation parameters obtained by means of the quantum-chemical calculations of this reaction confirms the proposed mechanism.

Author Biographies

Ярослав Петрович Ковальский, National university Lviv Polytechnic Ukraine, Lviv 79013 str. S.Bandery, 12

research worker

department analytical chemistry

Institute of chemistry and chemical technologies

Ирина Светозаровна Костив, Institute of chemistry and chemical technologies National university Lviv Polytechnic str. S.Bandery, 12, Lviv, Ukraine,79013

Candidate of engineerings sciences

Department analytical chemistry

Ольга Игоревна Маршалок, Institute of chemistry and chemical technologies National university Lviv Polytechnic str. S.Bandery, 12, Lviv, Ukraine,79013

Candidate of chemical sciences, an assistant

Department physical chemistry

Галина Олексеевна Маршалок, Institute of chemistry and chemical technologies National university Lviv Polytechnic str. S.Bandery, 12, Lviv, Ukraine,79013

Doctor of engineerings sciences, an professor

Department analytical chemistry 

Игорь Юрьевич Пыриг, Lviv medical institute str. Polishuka, 76, Lviv, Ukraine

Candidate of chemical sciences, an docent

Department chemistry

References

  1. 1. Dykstra, C. Frenking, G. Kim, K. Scuseria, G. (2005). Theory and Applications of Computational Chemistry. The First Forty Years printed in the Netherlands First Edition, 1167.

    2. Jensen, F. (2006). Introduction to Computational Chemistry. Wiley, 620.

    3. Brückner, R. (2010). Hardcover Organic Mechanisms - Reactions, Stereochemistry and Synthesis. First Edition, 856.

    4. Domingo, L. R. Chamorro,E. Pґerez, P. (2010) Understanding the mechanism of non-polar Diels–Alder reactions. A comparative ELF analysis of concerted and stepwise diradical mechanisms. Org. Biomol. Chem., 8, 5495–5504. http://dx.doi.org/10.1039/C0OB00563K

    5. Morales-Bayuelo, A. Vivas-Reyes, R. (2013). Topological model to quantify the global reactivity indexes as local in Diels–Alder reactions, using density function theory (DFT) and local quantum similarity (LQS). J Math Chem, 51, 125–143. http://dx.doi.org/10.1007/s10910-012-0069-8

    6. Polyova, I. Marshalok, G. Yatchyshyn, J. Polyuzhin,I.(2012). Кinetics of allyl-1,3,4-trimethylcyclo-hex-3-encarboxylate obtaining. Сhemistry & chemical technology, 6 (2), 119–122.

    7. Stewart, J. J. P. Program Package МОРАС2009. Available at: http://www.openmopac.net

    8. Senda, N. Program Package Winmostar. Available at: http://www.winmostar.com

    9. Spravochnik himika. Vol. 1 (1966). Himija, 952.

    10. Konovalov, A. I., Kiselov, V. D. (2003). Reakcija Dil'sa-Al'dera: Vlijanie vnutrennih i vneshnih faktorov na reakcionnuju sposobnost' sistem dien-dienofil. Izv.An.Serija him., 2, 279–297.

    11. Uryadov, V. G., Oficerov, E. N. (2003). Chemistry and computer modeling. Butlerov messages, 1, 1–8.

Published

2014-10-13

How to Cite

Ковальский, Я. П., Костив, И. С., Маршалок, О. И., Маршалок, Г. О., & Пыриг, И. Ю. (2014). Quantum-chemical research of the reaction mechanism of [4+2]-cycloaddition of 2,3-dimethylbuta-1,3-dien and allylmethacrylate. Eastern-European Journal of Enterprise Technologies, 5(6(71), 32–36. https://doi.org/10.15587/1729-4061.2014.27665

Issue

Section

Technology organic and inorganic substances