Information technology for low-contrast image processing in the space of ellipsometric stokes parameters
DOI:
https://doi.org/10.15587/1729-4061.2014.27667Keywords:
low-contrast image, ellipsometric characteristics, modulation conversion, normalization, orthogonalization, singular value decompositionAbstract
A method for low-contrast image processing and analysis in the space of ellipsometric Stokes parameters, which can be applied to improve the quality of one-parameter and multi-parameter images is proposed in the paper. Under the method, each pixel of the analyzed image is compared with four virtual Stokes parameters, which allows naturally implement color RGB coding of results without using the pseudocolor coding procedure. The proposed results interpretation method using RGB coding based on the parameters improves the low-contrast image analysis reliability.
Experiments have shown that the most appropriate method for multispectral ensemble compression is a singular value decomposition method. Images, corresponding to the first three maximum singular values are taken as three main (“own”) images. The synthesis of elliptic characteristics based on their “own” images provides a higher degree of detail of the resulting color elliptic RGB coding compared with direct RGB coding of three “own” images.
Presented information technology allows to carry out low-contrast image processing using the described methods and is designed to increase the sensitivity of visual analysis and selection of objects of potential interest.References
Shovengerdt, R. A. (2010). Distancionnoe zondirovanie. Modeli i metody obrabotki izobrazhenij. Moscow: Tehnosferab, 560.
Kalender, V. A. (2006). Komp'juternaja tomografija. Osnovy, tehnika, kachestvo izobrazhenij i oblasti klinicheskogo ispol'zovanija. Moscow: Tehnosfera, 334.
Gonsales, R., Vuds, R. (2006). Cifrovaja obrabotka izobrazhenij. Moscow: Tehnosfera, 1070.
Jane, B. (2007). Cifrovaja obrabotka izobrazhenij. Moscow: Tehnosvera, 583.
Forsajt, D., Pons, Zh. (2004). Komp'juternoe zrenie: sovremennyj podhod. Moscow; SPb.; Kiev: Vil'jams, 926.
Kinoshenko, D., Mashtalir, V., Yegorova, E., Shlyakhov, V.; Wei, C.-H. Li, Y. (Ed.) (2010). Metrical Properties of Nested Partitions for Image Retrieval. Machine Learning Techniques for Adaptive Multimedia Retrieval: Technologies Applications and Perspectives, 18–49.
Kondrat'ev, A. A., Tishhenko, I. P. (2012). Ispol'zovanie graficheskih vychislitelej v processah obrabotki i raspoznavanija izobrazhenij. Aktual'nye problemy raketno-kosmicheskogo priborostroenija i informacionnyh tehnologij». Mosow: Radiotehnika, 92.
Staren'kij, V. P., Aver'janova, L. A., Vasil'ev, L. L. (2012). Primenenie metodov konturnoj segmentacii tomogramm dlja usovershenstvovanija topometricheskoj podgotovki konformnoj luchevoj terapii. Vestnik NTU «HPI». Serija: Informatika i modelirovanie, 62 (968), 194–199.
Abakumov, V. G., Antoshhuk, S. G., Krylov, V. N. (2008). Bazovye metody obrabotki biomedicinskih zobrazhenij. Jelektronika i svjaz', Part 2, 53–58.
Udovik, I. M., Ahmetshina, L. G., Ahmetshin, A. M. (2010). Samoorganizujushhijsja interferencionnyj metod segmentacii slabokontrastnyh izobrazhenij. Iskusstvennyj intellekt, 3, 427–431.
Ahmetshina, L. G., Udovik, I. M. (2011). Fazovaja segmentacija mul'tispektral'nyh slabokontrastnyh izobrazhenij. Iskusstvennyj intellekt, 3, 200–206.
Udovik, I. M. (2011). Samoorganizujushhijsja interferencionnyj metod fazovoj segmentacii mul'tispektral'nyh izobrazhenij. Informacionnye tehnologii i bezopasnost' v nauke, tehnike i obrazovanii INFOTEH-2011. Sevastopol', 164.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Ирина Михайловна Удовик
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.