New multifunctional bromine-active polymers: synthesis, properties, and antimicrobial activity

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.278000

Keywords:

antimicrobial polymers, immobilization, N-bromamines, N-bromosulfonamides, active chlorine, N-bromotaurine, zone of microbial growth inhibition

Abstract

The increase in the frequency and scale of epidemics of infectious diseases gives extreme urgency to the development of new technologies for antiseptic and disinfectant treatment of various media, as well as materials/reagents for their implementation. Antimicrobial polymer materials of various chemical structures, including those containing halogen-active functional groups, are promising in this regard.

This work is devoted to the synthesis and investigation of the properties of granular and fibrous polymer materials with immobilized N-bromosulfonamide groups of different structure. It is shown that copolymers of styrene with divinylbenzene and polypropylene can be used as a carrier polymer. A technique has been developed that allows obtaining polymers with a content of up to 23 % of immobilized active bromine. The compliance of the synthesized materials with the declared structure has been proven by IR spectroscopy and a complex of chemical methods. A decrease in the strength of the obtained polymers compared to the original carriers has been observed, especially in the case of fibers. The stability of the synthesized polymers during storage is lower that of the previously described chlorine-active analogs. For the quantitative determination of active bromine in the target materials, a technique based on its rapid diffusion from the polymer into the taurine solution has been developed. Microbiological research has shown that the synthesized polymers have a pronounced antimicrobial activity, which is higher than that of immobilized N-chlorosulfonamides and is manifested even in the presence of a significant organic load.

The set of investigated characteristics of synthesized polymers with immobilized N-bromosulfonamide groups suggests the prospect of their use as components of antiseptic dressing materials, antimicrobial filters, devices for obtaining antiseptic solutions, and other medical products

Author Biographies

Bohdan Murashevych, Dnipro State Medical University

PhD, Associate Professor

Department of Biochemistry and Medical Chemistry

Dmitry Girenko, Ukrainian State University of Chemical Technology

Doctor of Chemical Sciences, Professor

Department of Physical Chemistry

Mykola Toropin, Ukrainian State University of Chemical Technology

Junior Researcher

Research Institute of Electroplating

Iryna Koshova, Dnipro State Medical University

PhD, Associate Professor

Department of Microbiology, Virology, Immunology, Epidemiology and Medical and Biological Physics and Informatics

Vadym Kovalenko, Ukrainian State University of Chemical Technology

PhD, Associate Professor

Department of Analytical Chemistry and Chemical Technology of Food Additives and Cosmetics

Oleg Lebed, Ukrainian State University of Chemical Technology

PhD, Associate Professor

Department of Biotechnology

Vasyl Chuiko, Dnipro State Medical University

PhD

Department of Obstetrics and Gynecology

Valerii Kotok, Université de Montpellier | CNRS

PhD, Associate Professor

Laboratoire of Charles Coulomb

Dmytro Stepanskyi, Dnipro State Medical University

Doctor of Medical Sciences, Professor

Department of Microbiology, Virology, Immunology, Epidemiology and Medical and Biological Physics and Informatics

References

  1. Shang, Y., Li, H., Zhang, R. (2021). Effects of Pandemic Outbreak on Economies: Evidence From Business History Context. Frontiers in Public Health, 9. doi: https://doi.org/10.3389/fpubh.2021.632043
  2. Kaye, A. D., Okeagu, C. N., Pham, A. D., Silva, R. A., Hurley, J. J., Arron, B. L. et al. (2021). Economic impact of COVID-19 pandemic on healthcare facilities and systems: International perspectives. Best Practice & Research Clinical Anaesthesiology, 35 (3), 293–306. doi: https://doi.org/10.1016/j.bpa.2020.11.009
  3. Marani, M., Katul, G. G., Pan, W. K., Parolari, A. J. (2021). Intensity and frequency of extreme novel epidemics. Proceedings of the National Academy of Sciences, 118 (35). doi: https://doi.org/10.1073/pnas.2105482118
  4. Gupta, S., Rouse, B. T., Sarangi, P. P. (2021). Did Climate Change Influence the Emergence, Transmission, and Expression of the COVID-19 Pandemic? Frontiers in Medicine, 8. doi: https://doi.org/10.3389/fmed.2021.769208
  5. Rodó, X., San-José, A., Kirchgatter, K., López, L. (2021). Changing climate and the COVID-19 pandemic: more than just heads or tails. Nature Medicine, 27 (4), 576–579. doi: https://doi.org/10.1038/s41591-021-01303-y
  6. Li, R., Richmond, P., Roehner, B. M. (2018). Effect of population density on epidemics. Physica A: Statistical Mechanics and Its Applications, 510, 713–724. doi: https://doi.org/10.1016/j.physa.2018.07.025
  7. Hollingsworth, T. D., Ferguson, N. M., Anderson, R. M. (2007). Frequent Travelers and Rate of Spread of Epidemics. Emerging Infectious Diseases, 13 (9), 1288–1294. doi: https://doi.org/10.3201/eid1309.070081
  8. Nikolich-Žugich, J. (2017). The twilight of immunity: emerging concepts in aging of the immune system. Nature Immunology, 19 (1), 10–19. doi: https://doi.org/10.1038/s41590-017-0006-x
  9. Diani, S., Leonardi, E., Cavezzi, A., Ferrari, S., Iacono, O., Limoli, A. et al. (2022). SARS-CoV-2—The Role of Natural Immunity: A Narrative Review. Journal of Clinical Medicine, 11 (21), 6272. doi: https://doi.org/10.3390/jcm11216272
  10. Bloom, D. E., Cadarette, D. (2019). Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response. Frontiers in Immunology, 10. doi: https://doi.org/10.3389/fimmu.2019.00549
  11. Bai, Y., Wang, Q., Liu, M., Bian, L., Liu, J., Gao, F. et al. (2022). The next major emergent infectious disease: reflections on vaccine emergency development strategies. Expert Review of Vaccines, 21 (4), 471–481. doi: https://doi.org/10.1080/14760584.2022.2027240
  12. Cozad, A., Jones, R. D. (2003). Disinfection and the prevention of infectious disease. American Journal of Infection Control, 31 (4), 243–254. doi: https://doi.org/10.1067/mic.2003.49
  13. Prajapati, P., Desai, H., Chandarana, C. (2022). Hand sanitizers as a preventive measure in COVID-19 pandemic, its characteristics, and harmful effects: a review. Journal of the Egyptian Public Health Association, 97 (1). doi: https://doi.org/10.1186/s42506-021-00094-x
  14. Siddiqui, A. A. (2020). The Role of Personal Protective Equipment (PPE) in Prevention of COVID-19 Novel Corona Virus and Fatalities occur due to Non-availability of the PPE. American Journal of Biomedical Science & Research, 9 (6), 490–499. doi: https://doi.org/10.34297/ajbsr.2020.09.001458
  15. Block, M. S., Rowan, B. G. (2020). Hypochlorous Acid: A Review. Journal of Oral and Maxillofacial Surgery, 78 (9), 1461–1466. doi: https://doi.org/10.1016/j.joms.2020.06.029
  16. Chung, I., Ryu, H., Yoon, S.-Y., Ha, J. C. (2022). Health effects of sodium hypochlorite: review of published case reports. Environmental Analysis Health and Toxicology, 37 (1), e2022006. doi: https://doi.org/10.5620/eaht.2022006
  17. Dong, A., Wang, Y.-J., Gao, Y., Gao, T., Gao, G. (2017). Chemical Insights into Antibacterial N-Halamines. Chemical Reviews, 117 (6), 4806–4862. doi: https://doi.org/10.1021/acs.chemrev.6b00687
  18. Ashby, L. V., Springer, R., Hampton, M. B., Kettle, A. J., Winterbourn, C. C. (2020). Evaluating the bactericidal action of hypochlorous acid in culture media. Free Radical Biology and Medicine, 159, 119–124. doi: https://doi.org/10.1016/j.freeradbiomed.2020.07.033
  19. Bernardi, A. O., Stefanello, A., Garcia, M. V., Parussolo, G., Stefanello, R. F., Moro, C. B., Copetti, M. V. (2018). Efficacy of commercial sanitizers against fungi of concern in the food industry. LWT, 97, 25–30. doi: https://doi.org/10.1016/j.lwt.2018.06.037
  20. Miyaoka, Y., Kabir, Md. H., Hasan, Md. A., Yamaguchi, M., Shoham, D., Murakami, H., Takehara, K. (2021). Virucidal activity of slightly acidic hypochlorous acid water toward influenza virus and coronavirus with tests simulating practical usage. Virus Research, 297, 198383. doi: https://doi.org/10.1016/j.virusres.2021.198383
  21. Williams, K., Hughson, A. G., Chesebro, B., Race, B. (2019). Inactivation of chronic wasting disease prions using sodium hypochlorite. PLOS ONE, 14(10), e0223659. doi: https://doi.org/10.1371/journal.pone.0223659
  22. Gessa Sorroche, M., Relimpio López, I., García-Delpech, S., Benítez del Castillo, J. M. (2022). Hypochlorous acid as an antiseptic in the care of patients with suspected COVID-19 infection. Archivos de La Sociedad Española de Oftalmología (English Edition), 97 (2), 77–80. doi: https://doi.org/10.1016/j.oftale.2021.01.010
  23. Kyriakopoulos, A. M., Grapsa, E., Marcinkiewicz, J., Nagl, M. (2019). Swift Cure of a Chronic Wound Infected With Multiresistant Staphylococcus aureus in an Elderly Patient With Stage 5 Renal Disease. The International Journal of Lower Extremity Wounds, 18 (2), 192–196. doi: https://doi.org/10.1177/1534734619834746
  24. Dakin, M. H. E. (2014). Pat. No. WO2015063468A1. Anti-inflammatory solution comprising sodium hypochlorite. Available at: https://patents.google.com/patent/WO2015063468A1/en
  25. Lackner, M., Rössler, A., Volland, A., Stadtmüller, M. N., Müllauer, B., Banki, Z. et al. (2022). N-chlorotaurine is highly active against respiratory viruses including SARS-CoV-2 (COVID-19) in vitro. Emerging Microbes & Infections, 11 (1), 1293–1307. doi: https://doi.org/10.1080/22221751.2022.2065932
  26. Giarratana, N., Rajan, B., Kamala, K., Mendenhall, M., Reiner, G. (2021). A sprayable Acid-Oxidizing solution containing hypochlorous acid (AOS2020) efficiently and safely inactivates SARS-Cov-2: a new potential solution for upper respiratory tract hygiene. European Archives of Oto-Rhino-Laryngology, 278 (8), 3099–3103. doi: https://doi.org/10.1007/s00405-021-06644-5
  27. Murashevych, B., Girenko, D., Maslak, H., Stepanskyi, D., Abraimova, O., Netronina, O., Zhminko, P. (2021). Acute inhalation toxicity of aerosolized electrochemically generated solution of sodium hypochlorite. Inhalation Toxicology, 34 (1-2), 1–13. doi: https://doi.org/10.1080/08958378.2021.2013348
  28. Slaughter, R. J., Watts, M., Vale, J. A., Grieve, J. R., Schep, L. J. (2019). The clinical toxicology of sodium hypochlorite. Clinical Toxicology, 57 (5), 303–311. doi: https://doi.org/10.1080/15563650.2018.1543889
  29. Gow, C. K., Weinhouse, C., Johnson, G. O., Saunders, K. E. (2022). Stability of Free Available Chlorine Levels in Dilute Sodium Hypochlorite Solutions over a 6-Week Period. Journal of the American Association for Laboratory Animal Science, 61 (2), 181–187. doi: https://doi.org/10.30802/aalas-jaalas-21-000080
  30. Girenko, D. V., Gyrenko, A. A., Nikolenko, N. V. (2019). Potentiometric Determination of Chlorate Impurities in Hypochlorite Solutions. International Journal of Analytical Chemistry, 2019, 1–7. doi: https://doi.org/10.1155/2019/2360420
  31. Bianculli, R. H., Mase, J. D., Schulz, M. D. (2020). Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules, 53 (21), 9158–9186. doi: https://doi.org/10.1021/acs.macromol.0c01273
  32. Kenawy, E.-R., Worley, S. D., Broughton, R. (2007). The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review. Biomacromolecules, 8 (5), 1359–1384. doi: https://doi.org/10.1021/bm061150q
  33. Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Kharaziha, M., Ismail, A. F., Sharif, S. et al. (2022). Antimicrobial Synthetic and Natural Polymeric Nanofibers as Wound Dressing: A Review. Advanced Engineering Materials, 24 (6), 2101460. doi: https://doi.org/10.1002/adem.202101460
  34. Shahid, A., Aslam, B., Muzammil, S., Aslam, N., Shahid, M., Almatroudi, A. et al. (2021). The prospects of antimicrobial coated medical implants. Journal of Applied Biomaterials & Functional Materials, 19, 228080002110403. doi: https://doi.org/10.1177/22808000211040304
  35. Low, J. L., Kao, P. H.-N., Tambyah, P. A., Koh, G. L. E., Ling, H., Kline, K. A., Cheow, W. S., Leong, S. S. J. (2021). Development of a polymer-based antimicrobial coating for efficacious urinary catheter protection. Biotechnology Notes, 2, 1–10. doi: https://doi.org/10.1016/j.biotno.2020.12.001
  36. Gulati, R., Sharma, S., Sharma, R. K. (2021). Antimicrobial textile: recent developments and functional perspective. Polymer Bulletin, 79 (8), 5747–5771. doi: https://doi.org/10.1007/s00289-021-03826-3
  37. Pullangott, G., Kannan, U., S., G., Kiran, D. V., Maliyekkal, S. M. (2021). A comprehensive review on antimicrobial face masks: an emerging weapon in fighting pandemics. RSC Advances, 11 (12), 6544–6576. doi: https://doi.org/10.1039/d0ra10009a
  38. Carmona-Ribeiro, A. M., Araújo, P. M. (2021). Antimicrobial Polymer−Based Assemblies: A Review. International Journal of Molecular Sciences, 22 (11), 5424. doi: https://doi.org/10.3390/ijms22115424
  39. Kamaruzzaman, N. F., Tan, L. P., Hamdan, R. H., Choong, S. S., Wong, W. K., Gibson, A. J. et al. (2019). Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? International Journal of Molecular Sciences, 20 (11), 2747. doi: https://doi.org/10.3390/ijms20112747
  40. Song, Cvelbar, Strazar, Vossebein, Zille (2019). Chemical, Thermo-Mechanical and Antimicrobial Properties of DBD Plasma Treated Disinfectant-Impregnated Wipes during Storage. Polymers, 11 (11), 1769. doi: https://doi.org/10.3390/polym11111769
  41. Nemeş, N. S., Ardean, C., Davidescu, C. M., Negrea, A., Ciopec, M., Duţeanu, N. et al. (2022). Antimicrobial Activity of Cellulose Based Materials. Polymers, 14 (4), 735. doi: https://doi.org/10.3390/polym14040735
  42. Santos, M., Fonseca, A., Mendonça, P., Branco, R., Serra, A., Morais, P., Coelho, J. (2016). Recent Developments in Antimicrobial Polymers: A Review. Materials, 9 (7), 599. doi: https://doi.org/10.3390/ma9070599
  43. Hui, F., Debiemme-Chouvy, C. (2013). Antimicrobial N-Halamine Polymers and Coatings: A Review of Their Synthesis, Characterization, and Applications. Biomacromolecules, 14 (3), 585–601. doi: https://doi.org/10.1021/bm301980q
  44. Liang, J., Wu, R., Wang, J.-W., Barnes, K., Worley, S. D., Cho, U. et al. (2006). N-halamine biocidal coatings. Journal of Industrial Microbiology & Biotechnology, 34 (2), 157–163. doi: https://doi.org/10.1007/s10295-006-0181-5
  45. Emerson, D. W. (1990). Polymer-bound active chlorine: disinfection of water in a flow system. Polymer supported reagents. 5. Industrial & Engineering Chemistry Research, 29 (3), 448–450. doi: https://doi.org/10.1021/ie00099a022
  46. Bogoczek, R., Kociołek-Balawejder, E. (1989). Studies on a macromolecular dichloroamine — the N,N-dichloro poly(styrene-co-divinylbenzene) sulphonamide. Angewandte Makromolekulare Chemie, 169 (1), 119–135. doi: https://doi.org/10.1002/apmc.1989.051690111
  47. Farah, S., Aviv, O., Laout, N., Ratner, S., Domb, A. J. (2015). Antimicrobial N-brominated hydantoin and uracil grafted polystyrene beads. Journal of Controlled Release, 216, 18–29. doi: https://doi.org/10.1016/j.jconrel.2015.07.013
  48. Bogoczek, R., Kociołek-Balawejder, E. (1991). N-bromo-poly(styrene-co-divinylbenzene) sulphonamide metal salts. Synthesis and basic properties. Angewandte Makromolekulare Chemie, 188 (1), 85–96. doi: https://doi.org/10.1002/apmc.1991.051880108
  49. Li, L., Pu, T., Zhanel, G., Zhao, N., Ens, W., Liu, S. (2012). New Biocide with BothN-Chloramine and Quaternary Ammonium Moieties Exerts Enhanced Bactericidal Activity. Advanced Healthcare Materials, 1 (5), 609–620. doi: https://doi.org/10.1002/adhm.201200018
  50. Chen, Y., Han, Q. (2011). Designing N-halamine based antibacterial surface on polymers: Fabrication, characterization, and biocidal functions. Applied Surface Science, 257 (14), 6034–6039. doi: https://doi.org/10.1016/j.apsusc.2011.01.115
  51. Toropin, V., Murashevych, B., Stepanskyi, D., Toropin, M., Kremenchutskiy, H., Burmistrov, K. (2019). New forms of immobilized active chlorine and its potential applications in medicine. Journal of the national academy of medical sciences of Ukraine, 25 (3), 340–352. doi: https://doi.org/10.37621/jnamsu-2019-3-340-352
  52. Murashevych, B., Koshova, I., Surmasheva, E., Girenko, D., Chuiko, V., Stepanskyi, D. (2022). Broad-purpose antimicrobial chlorine-active polymers: suppression of multidrug-resistant microorganisms and microbial penetration resistance. ScienceRise: Pharmaceutical Science, 5 (39), 64–73. doi: https://doi.org/10.15587/2519-4852.2022.266171
  53. Murashevych, B., Stepanskyi, D., Toropin, V., Mironenko, A., Maslak, H., Burmistrov, K., Teteriuk, N. (2022). Virucidal properties of new multifunctional fibrous N-halamine-immobilized styrene-divinylbenzene copolymers. Journal of Bioactive and Compatible Polymers, 37 (6), 453–468. doi: https://doi.org/10.1177/08839115221121852
  54. Dronov, S., Mamchur, V., et al. (2019). New wound dressings with prolonged action. Zaporozhye medical journal, 21 (3), 365–373.
  55. Murashevych, B., Toropin, V., Stepanskyi, D., Maslak, H., Burmistrov, K., Kotok, V., Kovalenko, V. (2021). Synthesis of new immobilized N-chloro-sulfonamides and release of active chlorine from them. EUREKA: Physics and Engineering, 4, 3–13. doi: https://doi.org/10.21303/2461-4262.2021.001929
  56. Abo-Farha, S. A., Abdel-Aal, A. Y., Ashour, I. A., Garamon, S. E. (2009). Removal of some heavy metal cations by synthetic resin purolite C100. Journal of Hazardous Materials, 169 (1-3), 190–194. doi: https://doi.org/10.1016/j.jhazmat.2009.03.086
  57. Soldatov, V. S. (2008). Syntheses and the Main Properties of Fiban Fibrous Ion Exchangers. Solvent Extraction and Ion Exchange, 26 (5), 457–513. doi: https://doi.org/10.1080/07366290802301358
  58. Walczewska, M., Peruń, A., Białecka, A., Śróttek, M., Jamróz, W., Dorożyński, P. et al. (2017). Comparative Analysis of Microbicidal and Anti-inflammatory Properties of Novel Taurine Bromamine Derivatives and Bromamine T. Taurine 10, 515–534. doi: https://doi.org/10.1007/978-94-024-1079-2_41
  59. Williams, W. J. (1979). Handbook of Anion Determination. Butterworth-Heinemann. doi: https://doi.org/10.1016/c2013-0-06303-7
  60. Kurisaki, K., Yoshimura, K. (2007). Kinetics of Sulfate Desorption from Strongly Acidic Cation-exchange Resin. Journal of Ion Exchange, 18 (4), 158–161. doi: https://doi.org/10.5182/jaie.18.158
  61. Balouiri, M., Sadiki, M., Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6 (2), 71–79. doi: https://doi.org/10.1016/j.jpha.2015.11.005
  62. Qisheng, R., Wenqiang, H. et. al. (1990). Infrared spectrum feature of the sulfonyl group bound to crosslinked polystyrenes. Acta Polymerica Sinica, 1 (1), 7–12.
  63. Gowda, B. T., Usha, K. M. (2003). Infrared and NMR (1H & 13C) Spectra of Sodium Salts of N-Bromo-Mono and Di-Substituted-Benzenesulphonamides. Zeitschrift Für Naturforschung A, 58 (5-6), 351–356. doi: https://doi.org/10.1515/zna-2003-5-618
  64. Bogoczek, R., Kociołek-Balawejder, E. (1993). Synthesis and basic characterization of a macromolecular dibromoamine: N,N-dibromo-poly(styrene-co-divinylbenzene)sulfonamide. Polymer, 34 (13), 2883–2888. doi: https://doi.org/10.1016/0032-3861(93)90135-w
  65. Gottardi, W., Klotz, S., Nagl, M. (2014). Superior bactericidal activity ofN-bromine compounds compared to theirN-chlorine analogues can be reversed under protein load. Journal of Applied Microbiology, 116 (6), 1427–1437. doi: https://doi.org/10.1111/jam.12474
New multifunctional bromine-active polymers: synthesis, properties, and antimicrobial activity

Downloads

Published

2023-04-30

How to Cite

Murashevych, B., Girenko, D., Toropin, M., Koshova, I., Kovalenko, V., Lebed, O., Chuiko, V., Kotok, V., & Stepanskyi, D. (2023). New multifunctional bromine-active polymers: synthesis, properties, and antimicrobial activity. Eastern-European Journal of Enterprise Technologies, 2(6 (122), 32–42. https://doi.org/10.15587/1729-4061.2023.278000

Issue

Section

Technology organic and inorganic substances