Development of Annona muricata Linn as green corrosion inhibitor under produced water: inhibition performance and adsorption model

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.278911

Keywords:

green corrosion inhibitors, organic corrosion inhibitors, Annona muricata Linn, soursop adsorption inhibition

Abstract

This work used soursop as a green corrosion inhibitor to protect API 5L Grade A from detrimental corrodent under produced water. Despite the effectiveness of inorganic inhibitors, recent evidence on their toxicity test suggests that implementing organic inhibitors is substantial to replace synthetic corrosion inhibitors. However, soursop utilization as a green corrosion inhibitor is poorly understood due to the lack of a comprehensive extraction mode and inhibitive mechanism. Several tests were conducted, including weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS), to unveil the nature of corrosion inhibition. Fourier Transform Infra-Red Spectroscopy revealed the dominant functional groups to bind with the substrate. The potentiodynamic polarization results show that the inhibitor is a mixed-type inhibitor that influences the anodic and cathodic reactions. The weight loss test showcases the highest inhibition efficiency of 52.62 % upon adding 2 ml inhibitors upon eight observation days. The polarization and EIS results provide that the inhibitor reduces the corrosion rate with higher inhibition of 88.52 %. The mentioned result is associated with the attachment of non-polar and polar Annona muricata Linn functional groups. The primary functional group involves C=O, C‒C and –O.H., which actively bonded to the metal's surface. The aromatic group at a wavenumber of 1,050 and 1,090 cm-1 shows ether's presence and behaves as an adsorption center. In this work, combining three solvents, hexane, acetone, and ethanol, elicits the complete extraction of the predominant compound from soursop

Author Biographies

Ayende, PEM Akamigas

Doctor of Engineering

Department of Mechanical Refinery Engineering

Rini Riastuti, Universitas Indonesia

Doctor of Engineering, Senior Lecturer

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Johny Wahyuadi Soedarsono, Universitas Indonesia

Doctor of Engineering, Professor

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Agus Paul Setiawan Kaban, Universitas Indonesia

Master of Engineering, Graduate Student

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

Mohammad Ikbal Hikmawan, PT Pertamina Hulu Energy

Master of Engineering

Rizal Tresna Rahmdani, Universitas Indonesia

Bachelor of Science, Bachelor of Engineering, Master of Engineering, Senior Engineer

Prof Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

References

  1. Liu, H., Gu, T., Zhang, G., Wang, W., Dong, S., Cheng, Y., Liu, H. (2016). Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corrosion Science, 105, 149–160. doi: https://doi.org/10.1016/j.corsci.2016.01.012
  2. Verma, C., Ebenso, E. E., Bahadur, I., Quraishi, M. A. (2018). An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. Journal of Molecular Liquids, 266, 577–590. doi: https://doi.org/10.1016/j.molliq.2018.06.110
  3. Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170 (2-3), 530–551. doi: https://doi.org/10.1016/j.jhazmat.2009.05.044
  4. Ottaviano, J. G., Cai, J., Murphy, R. S. (2014). Assessing the decontamination efficiency of a three-component flocculating system in the treatment of oilfield-produced water. Water Research, 52, 122–130. doi: https://doi.org/10.1016/j.watres.2014.01.004
  5. Nesrine, L., Salima, K., Lamine, K. M., Belaid, L., Souad, Bk., Lamine, G. M. et al. (2020). Phylogenetic characterization and screening of halophilic bacteria from Algerian salt lake for the production of biosurfactant and enzymes. World Journal of Biology and Biotechnology, 5 (2), 1. doi: https://doi.org/10.33865/wjb.005.02.0294
  6. Neff, J., Lee, K., DeBlois, E. M. (2011). Produced Water: Overview of Composition, Fates, and Effects. Produced Water, 3–54. doi: https://doi.org/10.1007/978-1-4614-0046-2_1
  7. Jiménez, S., Micó, M. M., Arnaldos, M., Medina, F., Contreras, S. (2018). State of the art of produced water treatment. Chemosphere, 192, 186–208. doi: https://doi.org/10.1016/j.chemosphere.2017.10.139
  8. Azmi, M. F., Soedarsono, J. W. (2018). Study of corrosion resistrance of pipeline API 5L X42 using green inhibitor bawang dayak (Eleutherine americanna Merr.) in 1M HCl. IOP Conference Series: Earth and Environmental Science, 105, 012061. doi: https://doi.org/10.1088/1755-1315/105/1/012061
  9. Arlan, A. S., Subekti, N., Soedarsono, J. W., Rustandi, A. (2018). Corrosion Inhibition by a Caesalpinia Sappan L Modified Imidazoline for Carbon Steel API 5L Grade X60 in HCl 1M Environment. Materials Science Forum, 929, 158–170. doi: https://doi.org/10.4028/www.scientific.net/msf.929.158
  10. Kaban, A. P. S., Ridhova, A., Priyotomo, G., Elya, B., Maksum, A., Sadeli, Y. et al. (2021). Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution. Eastern-European Journal of Enterprise Technologies, 2 (6 (110)), 6–20. doi: https://doi.org/10.15587/1729-4061.2021.224435
  11. Kaban, A., Mayangsari, W., Anwar, M., Maksum, A., Aditiyawarman, T., Soedarsono, J. et al. (2022). Unraveling the study of liquid smoke from rice husks as a green corrosion inhibitor in mild steel under 1 M HCl. Eastern-European Journal of Enterprise Technologies, 5 (6 (119)), 41–53. doi: https://doi.org/10.15587/1729-4061.2022.265086
  12. Gurjar, S., Sharma, S. K., Sharma, A., Ratnani, S. (2021). Performance of imidazolium based ionic liquids as corrosion inhibitors in acidic medium: A review. Applied Surface Science Advances, 6, 100170. doi: https://doi.org/10.1016/j.apsadv.2021.100170
  13. Mo, S., Li, L. J., Luo, H. Q., Li, N. B. (2017). An example of green copper corrosion inhibitors derived from flavor and medicine: Vanillin and isoniazid. Journal of Molecular Liquids, 242, 822–830. doi: https://doi.org/10.1016/j.molliq.2017.07.081
  14. Lu, H., Huang, K., Azimi, M., Guo, L. (2019). Blockchain Technology in the Oil and Gas Industry: A Review of Applications, Opportunities, Challenges, and Risks. IEEE Access, 7, 41426–41444. doi: https://doi.org/10.1109/access.2019.2907695
  15. Hasmila, I., Natsir, H., Soekamto, N. H. (2019). Phytochemical analysis and antioxidant activity of soursop leaf extract (Annona muricata Linn.). Journal of Physics: Conference Series, 1341 (3), 032027. doi: https://doi.org/10.1088/1742-6596/1341/3/032027
  16. Uwah, I. E., Okafor, P. C., Ebiekpe, V. E. (2013). Inhibitive action of ethanol extracts from Nauclea latifolia on the corrosion of mild steel in H2SO4 solutions and their adsorption characteristics. Arabian Journal of Chemistry, 6 (3), 285–293. doi: https://doi.org/10.1016/j.arabjc.2010.10.008
  17. Valdez-Salas, B., Vazquez-Delgado, R., Salvador-Carlos, J., Beltran-Partida, E., Salinas-Martinez, R., Cheng, N., Curiel-Alvarez, M. (2021). Azadirachta indica Leaf Extract as Green Corrosion Inhibitor for Reinforced Concrete Structures: Corrosion Effectiveness against Commercial Corrosion Inhibitors and Concrete Integrity. Materials, 14 (12), 3326. doi: https://doi.org/10.3390/ma14123326
  18. Saratha, R., Vasudha, V. G. (2010). Emblica Officinalis (Indian Gooseberry) Leaves Extract as Corrosion Inhibitor for Mild Steel in 1N HCl Medium. E-Journal of Chemistry, 7 (3), 677–684. doi: https://doi.org/10.1155/2010/162375
  19. Okafor, P. C., Uwah, I. E., Ekerenam, O. O., Ekpe, U. J. (2009). Combretum bracteosum extracts as eco‐friendly corrosion inhibitor for mild steel in acidic medium. Pigment & Resin Technology, 38 (4), 236–241. doi: https://doi.org/10.1108/03699420910973323
  20. Haldhar, R., Prasad, D., Bhardwaj, N. (2019). Extraction and experimental studies of Citrus aurantifolia as an economical and green corrosion inhibitor for mild steel in acidic media. Journal of Adhesion Science and Technology, 33 (11), 1169–1183. doi: https://doi.org/10.1080/01694243.2019.1585030
  21. Abdellattif, M. H., Alrefaee, S. H., Dagdag, O., Verma, C., Quraishi, M. A. (2021). Calotropis procera extract as an environmental friendly corrosion Inhibitor: Computational demonstrations. Journal of Molecular Liquids, 337, 116954. doi: https://doi.org/10.1016/j.molliq.2021.116954
  22. Widyastuti, D. A., Rahayu, P. (2017). Antioxidant Capacity Comparison of Ethanolic Extract of Soursop (Annona muricata Linn.) Leaves and Seeds as Cancer Prevention Candidate. Biology, Medicine, & Natural Product Chemistry, 6 (1), 1. doi: https://doi.org/10.14421/biomedich.2017.61.1-4
  23. Riastuti, R., Setiawidiani, D., Soedarsono, J. W., Aribowo, S., Kaban, A. P. S. (2022). Development of saga (Abrus precatorius) seed extract as a green corrosion inhibitor in API 5l Grade B under 1m HCL solutions. Eastern-European Journal of Enterprise Technologies, 4 (6 (118)), 46–56. doi: https://doi.org/10.15587/1729-4061.2022.263236
  24. Kaban, E. E., Maksum, A., Permana, S., Soedarsono, J. W. (2018). Utilization of secang heartwood (caesalpinia sappan l) as a green corrosion inhibitor on carbon steel (API 5L Gr. B) in 3.5% NaCl environment. IOP Conference Series: Earth and Environmental Science, 105, 012062. doi: https://doi.org/10.1088/1755-1315/105/1/012062
  25. Ayende, Rustandi, A., Soedarsono, J. W., Priadi, D., Sulistijono, Suprapta, D. N., Priyotomo, G., Bakri, R. (2014). Interaction of Purple Sweet Potato Extract with Ascorbic Acid in FeCl3 Solution. Applied Mechanics and Materials, 680, 32–37. doi: https://doi.org/10.4028/www.scientific.net/amm.680.32
  26. Xie, M. (2021). Castor-Bean Extract as an Inhibitor for Low Carbon Steel Corrosion in Simulated Oilfield Produced Water. International Journal of Electrochemical Science. doi: https://doi.org/10.20964/2021.08.24
  27. Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements (1994). ASTM.
  28. Zheng, Z., Hu, J., Eliaz, N., Zhou, L., Yuan, X., Zhong, X. (2022). Mercaptopropionic acid-modified oleic imidazoline as a highly efficient corrosion inhibitor for carbon steel in CO2-saturated formation water. Corrosion Science, 194, 109930. doi: https://doi.org/10.1016/j.corsci.2021.109930
  29. Chauhan, D. S., Quraishi, M. A., Srivastava, V., Haque, J., Ibrahimi, B. E. (2021). Virgin and chemically functionalized amino acids as green corrosion inhibitors: Influence of molecular structure through experimental and in silico studies. Journal of Molecular Structure, 1226, 129259. doi: https://doi.org/10.1016/j.molstruc.2020.129259
  30. Attou, A., Tourabi, M., Benikdes, A., Benali, O., Ouici, H. B., Benhiba, F. et al. (2020). Experimental studies and computational exploration on the 2-amino-5-(2-methoxyphenyl)-1,3,4-thiadiazole as novel corrosion inhibitor for mild steel in acidic environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604, 125320. doi: https://doi.org/10.1016/j.colsurfa.2020.125320
  31. Chen, Z., Wang, M., Fadhil, A. A., Fu, C., Chen, T., Chen, M. et al. (2021). Preparation, characterization, and corrosion inhibition performance of graphene oxide quantum dots for Q235 steel in 1 M hydrochloric acid solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127209. doi: https://doi.org/10.1016/j.colsurfa.2021.127209
  32. Galai, M., Rbaa, M., Ouakki, M., Abousalem, A. S., Ech-chihbi, E., Dahmani, K. et al. (2020). Chemically functionalized of 8-hydroxyquinoline derivatives as efficient corrosion inhibition for steel in 1.0 M HCl solution: Experimental and theoretical studies. Surfaces and Interfaces, 21, 100695. doi: https://doi.org/10.1016/j.surfin.2020.100695
  33. Rekkab, S. et al. (2012). Green corrosion inhibitor from essential oil of eucalyptus globulus (Myrtaceae) for C38 steel in sulfuric acid solution. J. Mater. Environ. Sci., 3 (4), 613–627. Available at: https://www.jmaterenvironsci.com/Document/vol3/vol3_N4/61-JMES-269-2012-Rekkab.pdf
  34. Paul Setiawan Kaban, A., Mayangsari, W., Syaiful Anwar, M., Maksum, A., Riastuti, R., Aditiyawarman, T., Wahyuadi Soedarsono, J. (2022). Experimental and modelling waste rice husk ash as a novel green corrosion inhibitor under acidic environment. Materials Today: Proceedings, 62, 4225–4234. doi: https://doi.org/10.1016/j.matpr.2022.04.738
  35. Melo, T., Figueiredo, A. R. P., da Costa, E., Couto, D., Silva, J., Domingues, M. R., Domingues, P. (2021). Ethanol Extraction of Polar Lipids from Nannochloropsis oceanica for Food, Feed, and Biotechnology Applications Evaluated Using Lipidomic Approaches. Marine Drugs, 19 (11), 593. doi: https://doi.org/10.3390/md19110593
  36. Tourabi, M., Nohair, K., Traisnel, M., Jama, C., Bentiss, F. (2013). Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3,5-bis(2-thienylmethyl)-4-amino-1,2,4-triazole. Corrosion Science, 75, 123–133. doi: https://doi.org/10.1016/j.corsci.2013.05.023
  37. Baux, J., Caussé, N., Esvan, J., Delaunay, S., Tireau, J., Roy, M. et al. (2018). Impedance analysis of film-forming amines for the corrosion protection of a carbon steel. Electrochimica Acta, 283, 699–707. doi: https://doi.org/10.1016/j.electacta.2018.06.189
  38. Chowdhury, M. A., Ahmed, M. M. S., Hossain, N., Islam, M. A., Islam, S., Rana, M. M. (2023). Tulsi and green tea extracts as efficient green corrosion inhibitor for the corrosion of aluminum alloy in acidic medium. Results in Engineering, 17, 100996. doi: https://doi.org/10.1016/j.rineng.2023.100996
  39. Vasyliev, G. S., Vorobyova, V. I., Linyucheva, O. V. (2020). Evaluation of Reducing Ability and Antioxidant Activity of Fruit Pomace Extracts by Spectrophotometric and Electrochemical Methods. Journal of Analytical Methods in Chemistry, 2020, 1–16. doi: https://doi.org/10.1155/2020/8869436
  40. Bhardwaj, N., Sharma, P., Kumar, V. (2021). Phytochemicals as steel corrosion inhibitor: an insight into mechanism. Corrosion Reviews, 39 (1), 27–41. doi: https://doi.org/10.1515/corrrev-2020-0046
  41. Yaro, A. S., Khadom, A. A., Wael, R. K. (2013). Apricot juice as green corrosion inhibitor of mild steel in phosphoric acid. Alexandria Engineering Journal, 52 (1), 129–135. doi: https://doi.org/10.1016/j.aej.2012.11.001
Development of Annona muricata Linn as green corrosion inhibitor under produced water: inhibition performance and adsorption model

Downloads

Published

2023-06-30

How to Cite

Ayende, Riastuti, R., Soedarsono, J. W., Kaban, A. P. S., Hikmawan, M. I., & Rahmdani, R. T. (2023). Development of Annona muricata Linn as green corrosion inhibitor under produced water: inhibition performance and adsorption model. Eastern-European Journal of Enterprise Technologies, 3(6 (123), 56–65. https://doi.org/10.15587/1729-4061.2023.278911

Issue

Section

Technology organic and inorganic substances