Comparison evaluation of unet-based models with noise augmentation for breast cancer segmentation on ultrasound image

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.289044

Keywords:

breast cancer, ultrasound imaging, deep learning, UNet, image segmentation, augmentation

Abstract

This paper investigates the application of convolutional neural networks (CNNs), particularly the UNet model architecture, to improve the accuracy of breast cancer tumor segmentation in ultrasound images. Accurate identification of breast cancer is essential for effective patient treatment. However, ultrasound images, often contain noise and artifacts, which can complicate the task of tumor segmentation. Therefore, to highlight the most robust architecture, modifications were made to the original set, including the addition of noise and fuzziness. In this study, a comparative study of five different variants of UNet models (UNet, Attention UNet, UNet++, Dense Inception UNet and Residual UNet) was conducted on a diverse set of ultrasound images with different breast tumors. Using consistent training methods and techniques of augmentation and adding noise to the data, an improvement in segmentation accuracy was highlighted when using the Dense Inception UNet architecture. The results have potential practical applications in the field of medical diagnosis and can assist medical professionals in automatic tumor segmentation in breast cancer ultrasound images. This study highlights the improvement of segmentation accuracy by introducing dense induction into the UNet architecture. Importantly, the Dice coefficient, a key segmentation metric, improved markedly, increasing from 0.973 to 0.976 after data augmentation. The results of the study offer promise to the medical community by offering a more accurate and reliable approach to segmenting breast cancer lesions on ultrasound images. The findings can be implemented in clinical practice to assist radiologists in early cancer diagnosis.

Author Biographies

Assel Mukasheva, Kazakh-British Technical University

PhD, Associate Professor

School of Information Technology and Engineering

Dina Koishiyeva, Almaty University of Power Engineering and Telecommunications; Satbayev University

Master’s Student

Department of Information Systems and Cybersecurity

PhD Doctorate

Department of Cybersecurity, Information Processing and Storage

Zhanna Suimenbayeva, Satbayev University

PhD Doctorate

Department of Cybersecurity, Information Processing and Storage

Sabina Rakhmetulayeva, International Information Technology University

PhD, Associate Professor

Department of Information Systems

Aigerim Bolshibayeva, International Information Technology University

PhD, Assistant Professor

Department of Information Systems

Gulnar Sadikova, Almaty University of Power Engineering and Telecommunications

PhD Doctorate

Department of Telecommunications and Space Engineering

References

  1. World Health Organization. Available at: https://www.who.int/
  2. Dunenova, G. A., Kalmataeva, Z. A., Kaidarova, D. R., Shatkovskaya, O. V., Zhylkaidarova, A. Z., Marchenko, E. A.,Glushkova, N. E. (2023). Breast cancer epidemiology in Kazakhstan for the period 2012-2021. Science & Healthcare, 25 (2). doi: https://doi.org/10.34689/SH.2023.25.2.018
  3. Igissinov, N., Toguzbayeva, A., Turdaliyeva, B., Igissinova, G., Bilyalova, Z., Akpolatova, G. et al. (2020). Breast Cancer in Megapolises of Kazakhstan: Epidemiological Assessment of Incidence and Mortality. Iranian Journal of Public Health. doi: https://doi.org/10.18502/ijph.v48i7.2948
  4. Barba, D., León-Sosa, A., Lugo, P., Suquillo, D., Torres, F., Surre, F. et al. (2021). Breast cancer, screening and diagnostic tools: All you need to know. Critical Reviews in Oncology/Hematology, 157, 103174. doi: https://doi.org/10.1016/j.critrevonc.2020.103174
  5. Ginsburg, O., Yip, C., Brooks, A., Cabanes, A., Caleffi, M., Dunstan Yataco, J. A. et al. (2020). Breast cancer early detection: A phased approach to implementation. Cancer, 126 (S10), 2379–2393. doi: https://doi.org/10.1002/cncr.32887
  6. Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A. et al. (2021). Deep learning-enabled medical computer vision. Npj Digital Medicine, 4 (1). doi: https://doi.org/10.1038/s41746-020-00376-2
  7. Dhahri, H., Al Maghayreh, E., Mahmood, A., Elkilani, W., Faisal Nagi, M. (2019). Automated Breast Cancer Diagnosis Based on Machine Learning Algorithms. Journal of Healthcare Engineering, 2019, 1–11. doi: https://doi.org/10.1155/2019/4253641
  8. MI-STA 2022 Conference Proceeding. (2022). 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). doi: https://doi.org/10.1109/mi-sta54861.2022.9837515
  9. Kuttan, G. O., Elayidom, M. S. (2023). Review on Computer Aided Breast Cancer Detection and Diagnosis using Machine Learning Methods on Mammogram Image. Current Medical Imaging Formerly Current Medical Imaging Reviews, 19 (12). doi: https://doi.org/10.2174/1573405619666230213093639
  10. Liu, Z., Wang, S., Dong, D., Wei, J., Fang, C., Zhou, X. et al. (2019). The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics, 9 (5), 1303–1322. doi: https://doi.org/10.7150/thno.30309
  11. Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234–241. doi: https://doi.org/10.1007/978-3-319-24574-4_28
  12. Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Lecture Notes in Computer Science, 3–11. doi: https://doi.org/10.1007/978-3-030-00889-5_1
  13. Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K. et al. (2018). Attention u-net: Learning where to look for the pancreas. arXiv. doi: https://doi.org/10.48550/arXiv.1804.03999
  14. Zhang, Z., Liu, Q., Wang, Y. (2018). Road Extraction by Deep Residual U-Net. IEEE Geoscience and Remote Sensing Letters, 15 (5), 749–753. doi: https://doi.org/10.1109/lgrs.2018.2802944
  15. Targ, S., Almeida, D., Lyman, K. (2016). Resnet in resnet: Generalizing residual architectures. arXiv. doi: https://doi.org/10.48550/arXiv.1603.08029
  16. Zhang, Z., Wu, C., Coleman, S., Kerr, D. (2020). DENSE-INception U-net for medical image segmentation. Computer Methods and Programs in Biomedicine, 192, 105395. doi: https://doi.org/10.1016/j.cmpb.2020.105395
  17. Zhao, Y., Lai, Z., Shen, L., Kong, H. (2022). Breast Lesions Segmentation using Dual-level UNet (DL-UNet). 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS). doi: https://doi.org/10.1109/cbms55023.2022.00067
  18. Honghan, Z., Liu, D. C., Jingyan, L., Liu, P., Yin, H., Peng, Y. (2021). RMS-SE-UNet: A Segmentation Method for Tumors in Breast Ultrasound Images. 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). doi: https://doi.org/10.1109/icccs52626.2021.9449302
  19. Negi, A., Raj, A. N. J., Nersisson, R., Zhuang, Z., Murugappan, M. (2020). RDA-UNET-WGAN: An Accurate Breast Ultrasound Lesion Segmentation Using Wasserstein Generative Adversarial Networks. Arabian Journal for Science and Engineering, 45 (8), 6399–6410. doi: https://doi.org/10.1007/s13369-020-04480-z
  20. Chavan, T., Prajapati, K., JV, K. R. (2022). InvUNET: Involuted UNET for Breast Tumor Segmentation from Ultrasound. Lecture Notes in Computer Science, 283–290. doi: https://doi.org/10.1007/978-3-031-09342-5_27
  21. Chen, G., Li, L., Dai, Y., Zhang, J., Yap, M. H. (2023). AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images. IEEE Transactions on Medical Imaging, 42 (5), 1289–1300. doi: https://doi.org/10.1109/tmi.2022.3226268
  22. Agarap, A. F. (2018). Deep Learning using Rectified Linear Units (ReLU). arXiv. doi: https://doi.org/10.48550/arXiv.1803.08375
  23. Liang, X., Wang, X., Lei, Z., Liao, S., Li, S. Z. (2017). Soft-Margin Softmax for Deep Classification. Lecture Notes in Computer Science, 413–421. doi: https://doi.org/10.1007/978-3-319-70096-0_43
  24. Guerrero-Pena, F. A., Marrero Fernandez, P. D., Ing Ren, T., Yui, M., Rothenberg, E., Cunha, A. (2018). Multiclass Weighted Loss for Instance Segmentation of Cluttered Cells. 2018 25th IEEE International Conference on Image Processing (ICIP). doi: https://doi.org/10.1109/icip.2018.8451187
  25. Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker, B., Rueckert, D. (2019). Attention gated networks: Learning to leverage salient regions in medical images. Medical Image Analysis, 53, 197–207. doi: https://doi.org/10.1016/j.media.2019.01.012
  26. Khanna, A., Londhe, N. D., Gupta, S., Semwal, A. (2020). A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images. Biocybernetics and Biomedical Engineering, 40 (3), 1314–1327. doi: https://doi.org/10.1016/j.bbe.2020.07.007
  27. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr.2016.90
  28. Chicco, D., Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21 (1). doi: https://doi.org/10.1186/s12864-019-6413-7
  29. Shamir, R. R., Duchin, Y., Kim, J., Sapiro, G., Harel, N. (2018). Continuous Dice Coefficient: a Method for Evaluating Probabilistic Segmentations. doi: https://doi.org/10.1101/306977
  30. Derczynski, L. (2016). Complementarity, F-score, and NLP Evaluation. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16). Portorož, 261–266. Available at: https://aclanthology.org/L16-1040/
  31. Eelbode, T., Bertels, J., Berman, M., Vandermeulen, D., Maes, F., Bisschops, R., Blaschko, M. B. (2020). Optimization for Medical Image Segmentation: Theory and Practice When Evaluating With Dice Score or Jaccard Index. IEEE Transactions on Medical Imaging, 39 (11), 3679–3690. doi: https://doi.org/10.1109/tmi.2020.3002417
  32. Cheng, B., Girshick, R., Dollar, P., Berg, A. C., Kirillov, A. (2021). Boundary IoU: Improving Object-Centric Image Segmentation Evaluation. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi: https://doi.org/10.1109/cvpr46437.2021.01508
  33. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A. (2020). Dataset of breast ultrasound images. Data in Brief, 28, 104863. doi: https://doi.org/10.1016/j.dib.2019.104863
  34. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A. (2019). Deep Learning Approaches for Data Augmentation and Classification of Breast Masses using Ultrasound Images. International Journal of Advanced Computer Science and Applications, 10 (5). doi: https://doi.org/10.14569/ijacsa.2019.0100579
  35. Akkus, Z., Cai, J., Boonrod, A., Zeinoddini, A., Weston, A. D., Philbrick, K. A., Erickson, B. J. (2019). A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow. Journal of the American College of Radiology, 16 (9), 1318–1328. doi: https://doi.org/10.1016/j.jacr.2019.06.004
  36. Ilesanmi, A. E., Chaumrattanakul, U., Makhanov, S. S. (2021). A method for segmentation of tumors in breast ultrasound images using the variant enhanced deep learning. Biocybernetics and Biomedical Engineering, 41 (2), 802–818. doi: https://doi.org/10.1016/j.bbe.2021.05.007
  37. Almajalid, R., Shan, J., Du, Y., Zhang, M. (2018). Development of a Deep-Learning-Based Method for Breast Ultrasound Image Segmentation. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). doi: https://doi.org/10.1109/icmla.2018.00179
  38. Zhang, C., Bao, N., Sun, H., Li, H., Li, J., Qian, W., Zhou, S. (2022). A Deep Learning Image Data Augmentation Method for Single Tumor Segmentation. Frontiers in Oncology, 12. doi: https://doi.org/10.3389/fonc.2022.782988
  39. Ferreira, M. R., Torres, H. R., Oliveira, B., Gomes-Fonseca, J., Morais, P., Novais, P., Vilaca, J. L. (2022). Comparative Analysis of Current Deep Learning Networks for Breast Lesion Segmentation in Ultrasound Images. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). doi: https://doi.org/10.1109/embc48229.2022.9871091
  40. Mukasheva, A., Akanov, Z., Yedilkhan, D. (2021). Research of the Regression Analysis Methods for Predicting the Growth of Patients with Diabetes Mellitus. 2021 IEEE International Conference on Smart Information Systems and Technologies (SIST). doi: https://doi.org/10.1109/sist50301.2021.9465975
  41. Zhao, T., Dai, H. (2022). Breast Tumor Ultrasound Image Segmentation Method Based on Improved Residual U-Net Network. Computational Intelligence and Neuroscience, 2022, 1–9. doi: https://doi.org/10.1155/2022/3905998
Comparison evaluation of unet-based models with noise augmentation for breast cancer segmentation on ultrasound image

Downloads

Published

2023-10-31

How to Cite

Mukasheva, A., Koishiyeva, D., Suimenbayeva, Z., Rakhmetulayeva, S., Bolshibayeva, A., & Sadikova, G. (2023). Comparison evaluation of unet-based models with noise augmentation for breast cancer segmentation on ultrasound image. Eastern-European Journal of Enterprise Technologies, 5(9 (125), 85–97. https://doi.org/10.15587/1729-4061.2023.289044

Issue

Section

Information and controlling system