Eliminating "systematic survivorship bias" in the attitude of specialists to the significance of investment attractive features of examined objects

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.292875

Keywords:

scientific and technical expertise, "marginal" opinions, "survivorship bias", statistical sampling

Abstract

Methods for detecting and eliminating false measurements are well known in the theory of metrology. However, the relevant methodology is not adapted to the needs of the qualitative assessment of the impact of the human factor on expert decision-making.

The "systematic survivorship bias" refers to the following: when involving experts in conducting examinations, they usually focus on that part of them, where statistically probable agreed opinions are observed based on the results of these examinations. Other experts are considered "marginal", their opinions are discarded and not taken into account, which defines the "systematic survivorship bias", also called the "paradox of information availability". Although the specified "marginality" may be a consequence of the unique experience of conducting examinations or, for example, the use of modern technologies by a specific specialist, little known to the general public. It should be noted that manipulation of statistical data with an orientation only on "successful" cases could be really dangerous, for example, in studies of the human factor in complex ergastic active and organizational management systems, in particular aviation.

The rationale and implementation of the algorithm for detecting and eliminating the "systematic survivorship bias" have been given in this paper. m=90 specialists who are usually involved in various examinations by UkrINTEI took part in the research. The actual elimination of the "systematic survivorship bias" occurs after the implementation of a certain number of iterations of the algorithm given in the current work.

As a result of iterations of the above-mentioned algorithm, it was established that four subgroups can be distinguished from the initial sample with the number of m=90, with the following numbers: mC=30 people, mH=12 people, mM=11 people, mT=6 people. For the specified subgroups, the consistency of group opinions satisfies the entire spectrum of hypothesis testing criteria established in this paper

Author Biographies

Oleksii Reva, National Aviation University

Doctor of Technical Sciences, Professor, Head of Department

Department of Management and Administration

Volodymyr Kamyshyn, Ukrainian Institute of Scientific and Technical Expertise and Information

Doctor of Pedagical Sciences, Senior Researcher, Corresponding Member of the National Academy of Pedagogical Sciences of Ukraine

Diretor

Serhii Borsuk, Ukrainian Institute of Scientific and Technical Expertise and Information

Doctor of Technical Sciences, Associate Professor

Stanislav Yarotskyiі, National Aviation University

Department of Management and Administration

Bogdan Avramchuk, Ukrainian Institute of Scientific and Technical Expertise and Information

PhD, Senior Researcher

References

  1. Horodnichenko, Yu., Solohub, I., Veder di Mauro, B. (2022). Vidbudova Ukrainy: pryntsypy ta polityka. Center for Economic Policy Research. Available at: https://cepr.org/system/files/2022-12/reconstruction%20book_Ukrainian_0.pdf
  2. Gupta, P., MacAvaney, S. (2022). On Survivorship Bias in MS MARCO. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. doi: https://doi.org/10.1145/3477495.3531832
  3. Rohleder, M., Scholz, H., Wilkens, M. (2010). Survivorship Bias and Mutual Fund Performance: Relevance, Significance, and Methodical Differences*. Review of Finance, 15 (2), 441–474. doi: https://doi.org/10.1093/rof/rfq023
  4. Amaya, D., Boudreault, M., McLeish, D. L. (2019). Maximum likelihood estimation of first-passage structural credit risk models correcting for the survivorship bias. Journal of Economic Dynamics and Control, 100, 297–313. doi: https://doi.org/10.1016/j.jedc.2018.11.005
  5. Floris, J., Kaiser, L., Mayr, H., Staub, K., Woitek, U. (2021). Investigating survivorship bias: the case of the 1918 flu pandemic. Applied Economics Letters, 29 (21), 2047–2052. doi: https://doi.org/10.1080/13504851.2021.1971614
  6. Reva, O. M., Borsuk, S. P., Zasanska, S. V., Yarotskyi, S. V. (2021). Theoretical background of estimation methodology for intellectual property objects investment attractiveness. Science, Technologies, Innovation, 1 (17), 3–16. doi: https://doi.org/10.35668/2520-6524-2021-1-01
  7. Reva, O., Kamyshin, V., Borsuk, S., Shulgin, V., Nevynitsyn, A. (2021). Qualitative Indexes of Air Traffic Controllers Attitude Toward Mistakes Hazard. Lecture Notes in Networks and Systems, 618–624. doi: https://doi.org/10.1007/978-3-030-80012-3_72
  8. Yaroshchuk, L. D. (2022). Ekspertni metody v avtomatyzovanykh systemakh keruvannia: Formuvannia ta napriamy vykorystannia ekspertnykh znan. Kyiv: KPI im. Ihoria Sikorskoho, 43. Available at: https://ela.kpi.ua/bitstream/123456789/51904/1/Ekspertni_Syst_Formy_i_napriamy_vykoryst_znan.pdf
  9. Reva, O. M., Borsuk, S. P. (2015). Air Traffic Control Students Tendencies of Desirability Levels during Flight Norms Violations. Procedia Manufacturing, 3, 3049–3053. doi: https://doi.org/10.1016/j.promfg.2015.07.850
  10. Wald, A. (1943). A Method of Estimating Plane Vulnerability Based on Damage of Survivors. Columbia University.
  11. Gardner, M. (1957). Fads and Fallacies in the Name of Science. Dover Publications, 384.
  12. Hu, Y., Li, Z., He, W., Wang, X., Cheng, X. (2023). Letter to the Editor: Is there survival bias? The etiologic analysis for the negative association between fatty liver and mortality in the elderly populations. Hepatology, 78 (2), E29–E30. doi: https://doi.org/10.1097/hep.0000000000000441
  13. Elton, E. J., Gruber, M. J., Blake, C. R. (1996). Survivor Bias and Mutual Fund Performance. Review of Financial Studies, 9 (4), 1097–1120. doi: https://doi.org/10.1093/rfs/9.4.1097
  14. Ioannidis, J. P. A. (2005). Why Most Published Research Findings Are False. PLoS Medicine, 2 (8), e124. doi: https://doi.org/10.1371/journal.pmed.0020124
  15. Shermer, M. (2011). Deviations: A Skeptical Investigation of Edgar Cayce's Association for Research and Enlightenment. Available at: https://www.skeptic.com/eskeptic/11-08-03/
  16. Brown, S. J., Goetzmann, W. N. (2018). Stephen Ross’s Contribution to Ex Post Conditioning and Survival Bias in Empirical Research. The Journal of Portfolio Management, 44 (6), 42–46. doi: https://doi.org/10.3905/jpm.2018.44.6.042
  17. Waldner, D., Smith, B. (2020). Survivorship Bias in Comparative Politics: Endogenous Sovereignty and the Resource Curse. Perspectives on Politics, 19 (3), 890–905. doi: https://doi.org/10.1017/s1537592720003497
  18. Shermer, M. (2014). Surviving Statistics. Scientific American, 311 (3), 94–94. doi: https://doi.org/10.1038/scientificamerican0914-94
  19. Klein, K. E. (2014). How Survivorship Bias Tricks Entrepreneurs. Bloomberg. Available at: https://www.bloomberg.com/news/articles/2014-08-11/success-stories-how-survivorship-bias-tricks-entrepreneurs
  20. Cormen, T., Leiserson, C., Rivest, R. Stein, C. (2013). Algorithmen - Eine Einführung. Berlin, Boston: De Gruyter Oldenbourg. doi: https://doi.org/10.1515/9783110522013
  21. Bychkivskyi, R. V., Stoliarchuk, P. H., Hamula, P. R. (2002). Metrolohiya, standartyzatsiya, upravlinnia yakistiu i sertyfikatsiya. Lviv: Nats. un-t "Lviv. politekhnika", 560.
  22. Zhykhariev V.M., Pavlyshyn R.Ye. (2020). Osnovy metrolohiyi ta standartyzatsiyi. Tsykl lektsiynykh i praktychnykh zaniat. Uzhhorod: TOV “RIK-U“, 280. Available at: https://dspace.uzhnu.edu.ua/jspui/bitstream/lib/48806/1/Жихарєв%20В.М.%20Павлишин%20Р.Є.%20Основи%20метрології%20та%20стандартизації%20%282020%29.pdf
  23. Reva, O., Nevynitsyn, A., Borsuk, S., Shulgin, V. (2021). Technology of Integrated Application of Classical Decision Making Criteria for Risk-Uncertainty Assessment of Group Systems of Preferences of Air Traffic Controllers on Error’s Dangers. Integrated Computer Technologies in Mechanical Engineering - 2020, 125–134. doi: https://doi.org/10.1007/978-3-030-66717-7_11
  24. Reva, O., Kamyshyn, V., Nevynitsyn, A., Shulgin, V., Nedbay, S. (2020). Criteria Indicators of the Consistency of Air Traffic Controllers’ Preferences on a Set of Characteristic Errors. Advances in Human Aspects of Transportation, 617–623. doi: https://doi.org/10.1007/978-3-030-50943-9_79
  25. Reva, O., Borsuk, S., Mushgyul-Ogli, B. M., Shirin-Ogli, P. M. (2016). New Approach to Determination of Main Solution Taking Dominant of Air Traffic Controller During Flight Level Norms Violation. Advances in Human Aspects of Transportation, 137–147. doi: https://doi.org/10.1007/978-3-319-41682-3_12
  26. Yarotskiy, S. (2021). Pilot site of experts’ attitude to the characteristics significance of the attractiveness for innovation of objects of intellectual property. Aerospace Technic and Technology, 4, 112–121. doi: https://doi.org/10.32620/aktt.2021.4sup2.15
  27. Petrenko, Yu. A., Rak, M. V. (2016). Model rozrakhunku koefitsientiv vaazhlyvosti faktoriv-zabrudniuvachiv pryproektvanni avtotransportnoho pidpryiemstva. Metrolohichni aspekty pryiniattia rishen v umovakh roboty na tekhnohenno nebezpechnykh obiektakh: materialy Vseuk. nauk.-prakt. internet-konf. molodykh uchenykh. Kharkiv: KhNADU, 105–108.
  28. Lichtenstein, S., Slovic, P. (Eds.) (2006). The Construction of Preference. Cambridge University Press. doi: https://doi.org/10.1017/cbo9780511618031
  29. Tarasov, V. A., Gerasimov, B. M., Levin, I. A., Korneychuk, V. A. (2008). Intellektual'nye sistemy podderzhki prinyatiya resheniy (teoriya, sintez, effektivnost'). Kyi: VIPOL, 336.
  30. Reva, O. M., Borsuk, S. P., Zavhorodnii, S. O., Sahanovska, L. A., Zasanska, S. V., Nasirov, Sh. Sh. (2021). Vstanovlennia «etalonnoi» systemy perevah aviadyspetcheriv na spektri kharakternykh pomylok. Problemy staloho rozvytku morskoho transportu PSDMI-21: tezy dopovidei Pershoi Mizhnarodnoi naukovo-praktychnoi konferentsiyi. Kherson: KhDMA, 75–80.
  31. Kopcha-Horiachkina, H. E. (2016). Teoriya rozpiznavannia obraziv. Chastyna I. Uzhhorod: Uzhhorodskyi natsionalnyi universytet. Available at: https://org2.knuba.edu.ua/pluginfile.php/55687/mod_resource/content/1/Посібник-Теор-розпізн-образ-ч-I.pdf
  32. Lubko, D. V., Sharov, S. V. (2019). Metody ta systemy shtuchnoho intelektu. Melitopol: FOP Odnoroh T.V., 264. Available at: http://www.tsatu.edu.ua/kn/wp-content/uploads/sites/16/knyha.-msshy-v-byblyoteku.pdf
  33. Kozlova, O. A. (2017). Sotsialna psykholohiya hrup ta hrupovoi vzaiemodiyi. Kharkiv: NTU «KhPI».
  34. Davydenko, Ye. O. (2012). Formalizatsiya protsesu formuvannia skladu ekspertnoi hrupy dlia analizu ryzykiv IT-proektiv. Visnyk Khersonskoho natsionalnoho tekhnichnoho universytetu, 1 (44), 163–169.
Eliminating "systematic survivorship bias" in the attitude of specialists to the significance of investment attractive features of examined objects

Downloads

Published

2023-12-28

How to Cite

Reva, O., Kamyshyn, V., Borsuk, S., Yarotskyiі S., & Avramchuk, B. (2023). Eliminating "systematic survivorship bias" in the attitude of specialists to the significance of investment attractive features of examined objects. Eastern-European Journal of Enterprise Technologies, 6(13 (126), 54–64. https://doi.org/10.15587/1729-4061.2023.292875

Issue

Section

Transfer of technologies: industry, energy, nanotechnology