Features of the coefficient of variation of parameters of the gas environment in fire in the premises

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.293279

Keywords:

ignition of material, gas environment, dangerous parameters, measure of sample coefficient of variation

Abstract

The object of the study is the selective coefficient of variation of dangerous parameters of the gas environment during the ignition of materials. The measure of the sample coefficient of variation of an arbitrary hazardous parameter of the gas environment observed at an arbitrary time interval is substantiated. The representativeness error of the measure of the sampling coefficient of variation, which depends on the value of the measure and the sample size, was determined. The measure allows you to numerically determine its value for an arbitrary observation interval. The difference in the measure at the intervals corresponding to the reliable absence and occurrence of ignition allows to detect the occurrence of ignition of the material. According to the results of laboratory studies, the measures of the sample coefficient of variation for carbon monoxide concentration, smoke density, and temperature of the gas medium in the laboratory chamber at intervals of absence and appearance of ignition of alcohol, paper, wood, and textiles were determined. It was established that the dangerous parameters of the gas environment at the intervals of absence and presence of ignition are characterized by different values of the increase in the measure of the sample coefficient of variation. For example, it is determined that the ignition of alcohol causes the maximum increase in the measure for carbon monoxide concentration from 0.135 to 0.441, for smoke density from 0.629 to 0.805, and for temperature from 0.001 to 0.115. When paper catches fire, the measure for carbon monoxide concentration and temperature increases from 0.0026 to 0.140 and from 0.0019 to 0.05, respectively. When burning wood, the measure for carbon monoxide concentration and temperature increases from 0.0072 to 0.177 and from 0.0067 to 0.016, respectively. The obtained results, provided that the hazardous parameters of the gas environment in the premises are measured and the sample coefficient of variation is calculated in practice, make it possible to use them in the creation of early fire detection systems

Author Biographies

Boris Pospelov, Scientific-Methodical Center of Educational Institutions in the Sphere of Civil Defence

Doctor of Technical Sciences, Professor

Yuliia Bezuhla, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Yurii Kozar, Luhansk State Medical University

Doctor of Law Sciences, Professor

Department of Biology, Histology, Pathomorphology and Forensic Medicine

Olekcii Krainiukov, V. N. Karazin Kharkiv National University

Doctor of Geographical Sciences, Professor

Department of Environmental Safety and Environmental Education

Larysa Chubko, National Aviation University

PhD, Associate Professor

Department of Biotechnology

Oleksandr Yashchenko, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Management and Organization in the Field of Civil Protection

Olena Liashevska, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Management and Organization in the Field of Civil Protection

Sergey Shcherbak, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Fire and Rescue Training

Pavlo Cherevko, Uzhhorod National University

PhD, Associate Professor

Department of Civil Law and Procedure

Viacheslav Kurepin, Mykolayiv National Agrarian University

PhD, Associate Professor

Department of Professional Training Methods

References

  1. Iatsyshyn, A. V., Ivaschenko, T. G., Matvieieva, I. V., Zakharchenko, J. V., Lahoiko, A. M. (2023). Development of recommendations for improving the radiation monitoring system of Ukraine. IOP Conference Series: Earth and Environmental Science, 1254 (1), 012109. doi: https://doi.org/10.1088/1755-1315/1254/1/012109
  2. Barannik, V., Babenko, Y., Kulitsa, O., Barannik, V., Khimenko, A., Matviichuk-Yudina, O. (2020). Significant Microsegment Transformants Encoding Method to Increase the Availability of Video Information Resource. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT). doi: https://doi.org/10.1109/atit50783.2020.9349256
  3. Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. doi: https://doi.org/10.15587/978-617-7319-43-5
  4. Otrosh, Y., Rybka, Y., Danilin, O., Zhuravskyi, M. (2019). Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities. E3S Web of Conferences, 123, 01012. doi: https://doi.org/10.1051/e3sconf/201912301012
  5. Pospelov, B., Kovrehin, V., Rybka, E., Krainiukov, O., Petukhova, O., Butenko, T. et al. (2020). Development of a method for detecting dangerous states of polluted atmospheric air based on the current recurrence of the combined risk. Eastern-European Journal of Enterprise Technologies, 5 (9 (107)), 49–56. doi: https://doi.org/10.15587/1729-4061.2020.213892
  6. Center of Fire Statistics (2022). World Fire Statistics of CTIF, 27.
  7. Chernukha, A., Teslenko, A., Kovalov, P., Bezuglov, O. (2020). Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition. Materials Science Forum, 1006, 70–75. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.70
  8. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
  9. Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S. et al. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4 (10 (112)), 52–58. doi: https://doi.org/10.15587/1729-4061.2021.238555
  10. Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. Tsinghua Science and Technology, 16 (1), 31–35. doi: https://doi.org/10.1016/s1007-0214(11)70005-0
  11. Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7 (4), 523–537. doi: https://doi.org/10.3390/a7040523
  12. Wu, Y., Harada, T. (2004). Study on the Burning Behaviour of Plantation Wood. Scientia Silvae Sinicae, 40 (2), 131–136. doi: https://doi.org/10.11707/j.1001-7488.20040223
  13. Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139.
  14. Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
  15. Heskestad, G., Newman, J. S. (1992). Fire detection using cross-correlations of sensor signals. Fire Safety Journal, 18 (4), 355–374. doi: https://doi.org/10.1016/0379-7112(92)90024-7
  16. Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrsson, S. L., Hart, S. et al. (2002). Prototype Early Warning Fire Detection Systems: Test Series 4 Results. NRL/MR/6180-02-8602. Naval Research Laboratory.
  17. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
  18. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
  19. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
  20. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
  21. Pospelov, B., Rybka, E., Savchenko, A., Dashkovska, O., Harbuz, S., Naden, E. et al. (2022). Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. Eastern-European Journal of Enterprise Technologies, 5 (10 (119)), 49–56. doi: https://doi.org/10.15587/1729-4061.2022.265781
  22. Pospelov, B., Andronov, V., Rybka, E., Chubko, L., Bezuhla, Y., Gordiichuk, S. et al. (2023). Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (121)), 46–54. doi: https://doi.org/10.15587/1729-4061.2023.272949
  23. Du, L., Liu, H., Bao, Z. (2005). Radar HRRP target recognition based on higher order spectra. IEEE Transactions on Signal Processing, 53 (7), 2359–2368. doi: https://doi.org/10.1109/tsp.2005.849161
  24. Hayashi, K., Mukai, N., Sawa, T. (2014). Simultaneous bicoherence analysis of occipital and frontal electroencephalograms in awake and anesthetized subjects. Clinical Neurophysiology, 125 (1), 194–201. doi: https://doi.org/10.1016/j.clinph.2013.06.024
  25. Pospelov, B., Rybka, E., Polkovnychenko, D., Myskovets, I., Bezuhla, Y., Butenko, T. et al. (2023). Comparison of bicoherence on the ensemble of realizations and a selective evaluation of the bispectrum of the dynamics of dangerous parameters of the gas medium during fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (122)), 14–21. doi: https://doi.org/10.15587/1729-4061.2023.276779
  26. Forkman, J. (2006). Statistical inference for the coefficient of variation in normally distributed data. Centre of biostatistics. Report 2.
  27. Curto, J. D., Pinto, J. C. (2008). The coefficient of variation asymptotic distribution in the case of non-iid random variables. Journal of Applied Statistics, 36 (1), 21–32. doi: https://doi.org/10.1080/02664760802382491
  28. Abdi, H., Edelman, B., Valentin, D., Dowling, W. J. (2009). Experimental design and analysis for psychology. Oxford University Press. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e340ab80345010a0c6e458ebb3e1458345b0b489
  29. Ye, L., Gu, X., Wang, D., Vogel, R. M. (2021). An unbiased estimator of coefficient of variation of streamflow. Journal of Hydrology, 594, 125954. doi: https://doi.org/10.1016/j.jhydrol.2021.125954
  30. Yousef, A. (2020). Performance of Three-Stage Sequential Estimation of the Normal Inverse Coefficient of Variation Under Type II Error Probability: A Monte Carlo Simulation Study. Frontiers in Physics, 8. doi: https://doi.org/10.3389/fphy.2020.00071
  31. Polstiankin, R. M., Pospelov, B. B. (2015). Stochastic models of hazardous factors and parameters of a fire in the premises. Problemy pozharnoy bezopasnosti, 38, 130–135. Available at: http://nbuv.gov.ua/UJRN/Ppb_2015_38_24
  32. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
  33. Dubinin, D., Cherkashyn, O., Maksymov, A., Beliuchenko, D., Hovalenkov, S., Shevchenko, S., Avetisyan, V. (2020). Investigation of the effect of carbon monoxide on people in case of fire in a building. Sigurnost, 62 (4), 347–357. doi: https://doi.org/10.31306/s.62.4.2
  34. Pasport. Spovishchuvach pozhezhnyi teplovyi tochkovyi. TPT-4. Arton. Available at: https://ua.arton.com.ua/files/passports/%D0%A2%D0%9F%D0%A2-4_UA.pdf
  35. Pasport. Spovishchuvach pozhezhnyi dymovyi tochkovyi optychnyi. SPD-3.2. Arton. Available at: https://ua.arton.com.ua/files/passports/spd-32_new_pas_ua.pdf
  36. Optical/Heat Multisensor Detector. Discovery. Available at: https://www.nsc-hellas.gr/pdf/APOLLO/discovery/B02704-00%20Discovery%20Multisensor%20Heat-%20Optical.pdf
  37. McGrattan K., Hostikka S., McDermott R., Floyd J., Weinschenk C., Overholt K. (2016). Fire dynamics simulator technical reference guide. Volume 3: Validation. National Institute of Standards and Technology. Available at: https://www.fse-italia.eu/PDF/ManualiFDS/FDS_Validation_Guide.pdf
  38. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2013). Fire Dynamics Simulator User’s Guide. National Institute of Standard and Technology. Available at: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913619
  39. Levin, B. R. (1989). Teoreticheskie osnovy statisticheskoy radiotehniki. Moscow: Radio i svyaz', 656.
  40. Gorban', I. I. (2011). Osobennosti zakona bol'shih chisel pri narusheniyah statisticheskoy ustoychivosti. Visti vyshchykh uchbovykh zakladiv. Radioelektronika, 54 (7), 31–42.
  41. Orlov, Yu. N., Osminin, K. P. (2008). Postroenie vyborochnoy funktsii raspredeleniya dlya prognozirovaniya nestatsionarnogo vremennogo ryada. Matematicheskoe modelirovanie, 20 (9), 23–33.
  42. Dragotti, P. L., Vetterli, M., Blu, T. (2007). Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon Meets Strang–Fix. IEEE Transactions on Signal Processing, 55 (5), 1741–1757. doi: https://doi.org/10.1109/tsp.2006.890907
  43. Forkman, J. (2009). Estimator and Tests for Common Coefficients of Variation in Normal Distributions. Communications in Statistics - Theory and Methods, 38 (2), 233–251. doi: https://doi.org/10.1080/03610920802187448
  44. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
  45. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
Features of the coefficient of variation of parameters of the gas environment in fire in the premises

Downloads

Published

2023-12-22

How to Cite

Pospelov, B., Bezuhla, Y., Kozar, Y., Krainiukov, O., Chubko, L., Yashchenko, O., Liashevska, O., Shcherbak, S., Cherevko, P., & Kurepin, V. (2023). Features of the coefficient of variation of parameters of the gas environment in fire in the premises. Eastern-European Journal of Enterprise Technologies, 6(10 (126), 58–64. https://doi.org/10.15587/1729-4061.2023.293279