Development of new C, S, N-containing plastic lubricants based on products from industrial waste integrated processing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.296622

Keywords:

integrated technologies, industrial waste, plastic lubricants, bis-(diethyldithiocarbamate)copper(II), sorption, modified surface

Abstract

The object of this research is the integrated processing of industrial waste from various industries, which makes it possible to reduce the use of material and energy resources and improve the ecological state of the environment. Waste from the chemical, petrochemical, and machine-building industries was subject to integrated technological processing.

The common link that united the investigated complex technological cycles was the use of a regenerated mixed sorbent (activated carbon+kieselguhr), on the surface of which topochemical transformations of chemicals that were part of industrial waste took place. Using a regenerated mixed sorbent, exhausted industrial oil which was the mineral basis of the developed new C, S, N-containing plastic lubricants was purified. In particular, we have established the conditions for obtaining diethyl ammonium chloride from unusable pesticides of the formula R1R2R3R4C6HCOOH∙HN(C2H5)2, whose topochemical interaction on the surface of the mixed sorbent leads to the formation of a sorbed fragment [sorbent (activated carbon+kieselguhr)]∙[(C2H5)2NC(=S)SK]. Subsequent interaction of aqueous solutions containing copper(II) ions with such a fragment leads to the formation of bis–(diethyldithiocarbamate)copper(II) on the surface of mixed sorbent. The resulting substances of the general composition [sorbent (activated carbon + kieselguhr)]∙{[(С2H5)2NC(=S)S]2Cu} were studied as thickeners and active polyfunctional components of the obtained plastic lubricants. Research into the tribological properties of new C, S, N-containing plastic lubricants showed their high anti-wear and heat-resistant properties and the possibility of effective use in highly loaded friction nodes

Author Biographies

Anatoliy Ranskiy, Vinnytsia National Technical University

Doctor of Chemical Sciences, Professor

Department of Ecology, Chemistry and Environmental Protection Technologies

Olha Sandul, Vinnytsia National Technical University

Department of Ecology, Chemistry and Environmental Protection Technologies

Olga Gordienko, Vinnytsia National Technical University

PhD, Associate Professor

Department of Ecology, Chemistry and Environmental Protection Technologies

Natalia Didenko, National Pirogov Memorial Medical University

PhD, Associate Professor

Department of Pharmaceutical Chemistry

Taras Titov, Vinnytsia National Technical University

PhD

Department of Ecology, Chemistry and Environmental Protection Technologies

References

  1. Ishchuk, Yu. L. (1996). Sostav, struktura i svoystva plastichnyh smazok. Kyiv: Naukova dumka, 508.
  2. Ranskyi, A. P., Boichenko, S. V., Hordienko, O. A., Didenko, N. O., Voloshynets, V. A. (2012). Kompozytsiyni mastylni materialy na osnovi tioamidiv ta yikh kompleksnykh spoluk. Syntez. Doslidzhennia. Vykorystannia. Vinnytsia: VNTU, 328. Available at: https://press.vntu.edu.ua/index.php/vntu/catalog/book/207
  3. Holmberg, K., Erdemir, A. (2017). Influence of tribology on global energy consumption, costs and emissions. Friction, 5 (3), 263–284. https://doi.org/10.1007/s40544-017-0183-5
  4. Heshmati, A. (2016). A Review of the Circular Economy and its Implementation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2713032
  5. Shao, X., Wang, L., Yang, Y., Yang, T., Deng, G., He, Y. et al. (2023). Influence of preload on the tribological performance of MoS2/GO composite lubricating coating. Tribology International, 181, 108306. https://doi.org/10.1016/j.triboint.2023.108306
  6. Torres, H., Rodríguez Ripoll, M., Prakash, B. (2017). Tribological behaviour of self-lubricating materials at high temperatures. International Materials Reviews, 63 (5), 309–340. https://doi.org/10.1080/09506608.2017.1410944
  7. Tonge, P., Roy, A., Patel, P., Beall, C. J., Stoyanov, P. (2022). Tribological Evaluation of Lead-Free MoS2-Based Solid Film Lubricants as Environmentally Friendly Replacements for Aerospace Applications. Lubricants, 10 (1), 7. https://doi.org/10.3390/lubricants10010007
  8. Vazirisereshk, M. R., Martini, A., Strubbe, D. A., Baykara, M. Z. (2019). Solid Lubrication with MoS2: A Review. Lubricants, 7 (7), 57. https://doi.org/10.3390/lubricants7070057
  9. Savan, A., Pflüger, E., Voumard, P., Schröer, A., Simmonds, M. (2000). Modern solid lubrication: Recent developments and applications of MoS2. Lubrication Science, 12 (2), 185–203. https://doi.org/10.1002/ls.3010120206
  10. Donnet, C., Martin, J. M., Le Mogne, Th., Belin, M. (1996). Super-low friction of MoS2 coatings in various environments. Tribology International, 29 (2), 123–128. https://doi.org/10.1016/0301-679x(95)00094-k
  11. Khudoyarova, O., Gordienko, O., Blazhko, A., Sydoruk, T., Ranskiy, A. (2020). Desulfurization of Industrial Water-Alkaline Solutions and Receiving new Plastic Oils. Journal of Ecological Engineering, 21 (6), 61–66. https://doi.org/10.12911/22998993/123254
  12. Khudoyarova, O., Ranskiy, A., Korinenko, B., Gordienko, O., Sydoruk, T., Didenko, N., Kryklyvyi, R. (2021). Integration of Technological Cycles of Industrial Waste Processing. Journal of Ecological Engineering, 22 (6), 209–214. https://doi.org/10.12911/22998993/137821
  13. Ranskiy, A., Gordienko, O., Sakalova, H., Sydoruk, T., Titov, T., Blazhko, O. (2023). Complex Sorption Treatment of Industrial Waste and Production of Plastic Lubricants. Ecological Engineering & Environmental Technology, 24 (3), 54–59. https://doi.org/10.12912/27197050/159628
  14. Khudoyarova, O. S., Gordienko, O. A., Sydoruk, T. I., Titov, T. S., Ranskiy, A. P. (2020). Surface modification of mixed sorbents with sulfide ions for purification of galvanic wash water of copper plating process. Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical Engineering, Ecology and Resource Saving, 2, 36–46. https://doi.org/10.20535/2617-9741.2.2020.208054
  15. Planet. The Circular Carbon Economy. Available at: https://korea.aramco.com/en/making-a-difference/planet/the-circular-carbon-economy
  16. Mandziuk, I. A., Ivanishena, T. V. (2002). Doslidzhennia khimichnoho retsyklinhu – hlikolizu polietylentereftalatu. Visnyk Tekhnolohichnoho universytetu Podillia, 5, 186–189.
  17. Ranskiy, A. P., Khudoyarova, O. S., Gordienko, O. A., Titov, T. S., Kryklyvyi, R. D. (2019). Regeneration of Sorbents Mixture After the Purification of Recycled Water in Production of Soft Drinks. Journal of Water Chemistry and Technology, 41 (5), 318–321. https://doi.org/10.3103/s1063455x19050084
  18. Titov, T. S., Dykha, O. V., Gordienko, O. A., Gruzdeva, O. V. (2013). Analysis of antiwear properties of N, N-dialkyldithiocarbamates of some 3d-metals as additives for industrial oils. Problems of Tribology, 67 (1), 105–113. Available at: https://tribology.khnu.km.ua/index.php/ProbTrib/article/view/154
  19. Hordienko, O. A., Ranskyi, A. P., Yevsieieva, M. V., Avdienko, T. M. (2011). Utylizatsiya pestytsydnoho preparatu Banvel. Voprosy himii i himicheskoy tehnologii, 6, 162–167. Available at: https://ir.lib.vntu.edu.ua/handle/123456789/940
  20. Nakamoto, K. (1970). Infrared Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, 338.
  21. Xie, Y., Bertoni, G., Riedinger, A., Sathya, A., Prato, M., Marras, S. et al. (2015). Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment. Chemistry of Materials, 27 (21), 7531–7537. https://doi.org/10.1021/acs.chemmater.5b03892
  22. Turo, M. J., Macdonald, J. E. (2014). Crystal-Bound vs Surface-Bound Thiols on Nanocrystals. ACS Nano, 8 (10), 10205–10213. https://doi.org/10.1021/nn5032164
  23. Xie, Y., Riedinger, A., Prato, M., Casu, A., Genovese, A., Guardia, P. et al. (2013). Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions. Journal of the American Chemical Society, 135 (46), 17630–17637. https://doi.org/10.1021/ja409754v
  24. Coughlan, C., Ibáñez, M., Dobrozhan, O., Singh, A., Cabot, A., Ryan, K. M. (2017). Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 117 (9), 5865–6109. https://doi.org/10.1021/acs.chemrev.6b00376
  25. Tertyh, V. A., Belyakova, L. A. (1991). Himicheskie reaktsii s uchastiem poverhnosti kremnezema. Kyiv: Naukova dumka, 246. Available at: https://www.twirpx.com/file/265212/
  26. da Silva, M. A., Dreiss, C. A. (2015). Soft nanocomposites: nanoparticles to tune gel properties. Polymer International, 65 (3), 268–279. https://doi.org/10.1002/pi.5051
  27. Voevodin, A., Zabinski, J. (2005). Nanocomposite and nanostructured tribological materials for space applications. Composites Science and Technology. https://doi.org/10.1016/j.compscitech.2004.10.008
  28. Wang, G. P., Chang, T. C., Hong, Y. S., Chiu, Y. S. (2002). Dynamics of novel hydrogen-bonded acidic fluorinated poly(amide-imide-silica) hybrids studied by solid-state NMR. Polymer, 43 (8), 2191–2200. https://doi.org/10.1016/s0032-3861(02)00016-2
Development of new C, S, N-containing plastic lubricants based on products from industrial waste integrated processing

Downloads

Published

2024-02-28

How to Cite

Ranskiy, A., Sandul, O., Gordienko, O., Didenko, N., & Titov, T. (2024). Development of new C, S, N-containing plastic lubricants based on products from industrial waste integrated processing. Eastern-European Journal of Enterprise Technologies, 1(6 (127), 13–21. https://doi.org/10.15587/1729-4061.2024.296622

Issue

Section

Technology organic and inorganic substances