Adaptation of Stadier's apparatus for electrophoresis of main milk proteins

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.296753

Keywords:

apparatus for electrophoresis, casein fractions, milk whey proteins, electrophoretic systems

Abstract

The object of research is a Stadier-type apparatus for analytical electrophoresis of proteins. In the milk proteins research, in addition, there is a need to carry out serial express analyzes of their various groups, as well as the isolation of individual homogeneous fractions. The dimensions of working chambers for analytical, express, and micro preparative electrophoresis of caseins and milk whey proteins were proposed to solve this task. For each type of electrophoresis, different chambers and formers are used without changing the design of the apparatus. The apparatus is suitable for electrophoretic systems used for the analysis of milk proteins. Analysis of casein in the anodic system of a homogeneous polyacrylamide gel in the presence of urea allows identification of the main fractions: αS1-CN-8P, αS1-CN-9P, αS2-CN-10P, αS2-CN-11P, αS2-CN-12P, αS2-CN-13P, β-CN-5P, ϰ-CN-1P and three β-casein fragments f(29-209), f(106-209) and f(108-209). Express electrophoresis in the presence of urea reveals four fractions of caseins: αS1-CN, αS2-CN, β-CN, and ϰ-CN. The analysis of whey proteins in the Davis native disc electrophoresis system allows identification of β-Lg A, β-Lg B, α-La, BSA fractions, and a group of immunoglobulin fractions. The express electrophoregram differs by a common band A and B variants of β-Lg. Due to an adequate selection of electrophoretic systems, it is possible to identify semi-quantitatively all the main fractions of milk proteins under analytical or express mode. The adapted apparatus also makes it possible to conduct micro preparative electrophoresis and obtain the main fractions of milk proteins. In this case, the yield of electrophoretically pure proteins is: β-CN-5P (23±5 %), β-Lg (A+B) (27±6 %), α-La (11±3 %), and purified groups of αS1-CN-8P+αS1-CN-9P (25±6 %), αS2-CN-(10-13P) (6±1.5 %) and ϰ-CN-1P (7±2 %). The apparatus could be used at enterprises producing dairy protein products

Author Biographies

Volodymy Yukalo, Ternopil Ivan Puluj National Technical University

Doctor of Biological Sciences, Professor

Department of Food Biotechnology and Chemistry

Kateryna Datsyshyn, Ternopil Ivan Puluj National Technical University

PhD, Associate Professor

Department of Food Biotechnology and Chemistry

Olha Krupa, Ternopil Ivan Puluj National Technical University

PhD, Associate Professor

Department of Food Biotechnology and Chemistry

Liudmyla Storozh, Ternopil Ivan Puluj National Technical University

PhD, Associate Professor

Department of Food Biotechnology and Chemistry

References

  1. Fox, P. F., Uniacke-Lowe, T., McSweeney, P. L. H., O’Mahony, J. A. (2015). Dairy Chemistry and Biochemistry. Springer, 584. https://doi.org/10.1007/978-3-319-14892-2
  2. Yukalo, V. H. (2021). Biolohichna aktyvnist proteiniv i peptydiv moloka. Ternopil: Vyd-vo TNTU imeni Ivana Puliuia, 372, 372. Available at: http://elartu.tntu.edu.ua/handle/lib/36801
  3. Kukhtyn, M., Vichko, O., Kravets, O., Karpyk, H., Shved, O., Novikov, V. (2019). Biochemical and microbiological changes during fermentation and storage of a fermented milk product prepared with Tibetan Kefir Starter. Archivos Latinoamericanos de Nutrición, 68 (4), 336–343. https://doi.org/10.37527/2018.68.4.007
  4. Kukhtyn, M., Salata, V., Horiuk, Y., Kovalenko, V., Ulko, L., Prosyanуi, S. et al. (2021). The influence of the denitrifying strain of Staphylococcus carnosus No. 5304 on the content of nitrates in the technology of yogurt production. Potravinarstvo Slovak Journal of Food Sciences, 15, 66–73. https://doi.org/10.5219/1492
  5. Minorova, A., Romanchuk, I., Verbytskyi, S., Danylenko, S., Krushelnytska, N., Potemska, O., Narizhnyi, S. (2022). Effect of protein and carbohydrate components upon quality parameters and viable probiotic bacteria content in milk mixtures during their drying and storage. Journal of Microbiology, Biotechnology and Food Sciences, e3778. https://doi.org/10.55251/jmbfs.3778
  6. Slyvka, I., Tsisaryk, O., Musii, L., Kushnir, I., Koziorowski, M., Koziorowska, A. (2022). Identification and Investigation of properties of strains Enterococcus spp. Isolated from artisanal Carpathian cheese. Biocatalysis and Agricultural Biotechnology, 39, 102259. https://doi.org/10.1016/j.bcab.2021.102259
  7. Musiy, L., Tsisaryk, O., Slyvka, I., Mykhaylytska, O., Gutyj, B. (2017). Research into probiotic properties of cultured butter during storing. Eastern-European Journal of Enterprise Technologies, 3 (11 (87)), 31–36. https://doi.org/10.15587/1729-4061.2017.103539
  8. Sharma, N., Sharma, R., Rajput, Y. S., Mann, B., Singh, R., Gandhi, K. (2021). Separation methods for milk proteins on polyacrylamide gel electrophoresis: Critical analysis and options for better resolution. International Dairy Journal, 114, 104920. https://doi.org/10.1016/j.idairyj.2020.104920
  9. Duarte-Vázquez, M. A., García-Ugalde, C. R., Álvarez, B. E., Villegas, L. M., García-Almendárez, B. E. et al. (2018). Use of urea-polyacrylamide electrophoresis for discrimination of A1 and A2 beta casein variants in raw cow’s milk. Journal of Food Science and Technology, 55 (5), 1942–1947. https://doi.org/10.1007/s13197-018-3088-z
  10. Hinz, K., O’Connor, P. M., Huppertz, T., Ross, R. P., Kelly, A. L. (2012). Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk. Journal of Dairy Research, 79 (2), 185–191. https://doi.org/10.1017/s0022029912000015
  11. Yukalo, V., Datsyshyn, K., Storozh, L. (2019). Electrophoretic system for express analysis of whey protein fractions. Eastern-European Journal of Enterprise Technologies, 2 (11 (98)), 37–44. https://doi.org/10.15587/1729-4061.2019.160186
  12. Nollet, L. M. L., Toldra, F. (Eds.) (2009). Handbook of Dairy Foods Analysis. CRC Press. https://doi.org/10.1201/9781420046328
  13. Farrell, H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K. et al. (2004). Nomenclature of the Proteins of Cows’ Milk—Sixth Revision. Journal of Dairy Science, 87 (6), 1641–1674. https://doi.org/10.3168/jds.s0022-0302(04)73319-6
  14. Iukalo, А. V. (2015). Identification of protein fractions of milk cows casein complex. The Ukrainian Biochemical Journal, 87 (4), 87–91. https://doi.org/10.15407/ubj87.04.087
  15. Iukalo, A. V. (2014). New Approach for Isolation of Individual Caseins from Cow Milk by the Preparative Electrophoresis. Advances in Biological Chemistry, 04 (06), 382–387. https://doi.org/10.4236/abc.2014.46043
  16. Nurup, C. N., Czárán, T. L., Rattray, F. P. (2020). A chromatographic approach to understanding the plasmin-plasminogen system in acid whey. International Dairy Journal, 106, 104705. https://doi.org/10.1016/j.idairyj.2020.104705
  17. Qian, F., Sun, J., Cao, D., Tuo, Y., Jiang, S., Mu, G. (2017). Experimental and Modelling Study of the Denaturation of Milk Protein by Heat Treatment. Korean Journal for Food Science of Animal Resources, 37 (1), 44–51. https://doi.org/10.5851/kosfa.2017.37.1.44
  18. Yukalo, A., Yukalo, V., Shynkaryk, M. (2009). Electrophoretic separation of the milk protein. Proceeding of the International Conference on Bio and Food Electrotechnologies, 227–231.
  19. Pesic, M., Barac, M., Vrvic, M., Ristic, N., Macej, O., Stanojevic, S. (2011). Qualitative and quantitative analysis of bovine milk adulteration in caprine and ovine milks using native-PAGE. Food Chemistry, 125 (4), 1443–1449. https://doi.org/10.1016/j.foodchem.2010.10.045
  20. Yukalo, V., Datsyshyn, K., Krupa, O., Pavlistova, N. (2019). Obtaining of β-LG, α-LA and BSA protein fractions from milk whey. Ukrainian Food Journal, 8 (4), 788–798. https://doi.org/10.24263/2304-974x-2019-8-4-10
  21. Raak, N., Abbate, R., Lederer, A., Rohm, H., Jaros, D. (2018). Size Separation Techniques for the Characterisation of Cross-Linked Casein: A Review of Methods and Their Applications. Separations, 5 (1), 14. https://doi.org/10.3390/separations5010014
  22. Yukalo, V. G. (2005). Obtaining of casein protein complex fractions from cow milk. Nutracos, 5, 7–19.
  23. Studier, F. W. (1965). Sedimentation studies of the size and shape of DNA. Journal of Molecular Biology, 11 (2), 373–390. https://doi.org/10.1016/s0022-2836(65)80064-x
  24. Choveaux, D., Krause, R. G. E., Goldring, J. P. D. (2012). Rapid Detection of Proteins in Polyacrylamide Electrophoresis Gels with Direct Red 81 and Amido Black. Protein Electrophoresis, 585–589. https://doi.org/10.1007/978-1-61779-821-4_53
  25. Mao, X. Y., Tong, P. S., Gualco, S., Vink, S. (2012). Effect of NaCl addition during diafiltration on the solubility, hydrophobicity, and disulfide bonds of 80% milk protein concentrate powder. Journal of Dairy Science, 95 (7), 3481–3488. https://doi.org/10.3168/jds.2011-4691
Adaptation of Stadier's apparatus for electrophoresis of main milk proteins

Downloads

Published

2024-02-28

How to Cite

Yukalo, V., Datsyshyn, K., Krupa, O., & Storozh, L. (2024). Adaptation of Stadier’s apparatus for electrophoresis of main milk proteins. Eastern-European Journal of Enterprise Technologies, 1(11 (127), 73–80. https://doi.org/10.15587/1729-4061.2024.296753

Issue

Section

Technology and Equipment of Food Production