A comparative analysis of gas-cooled fast reactor using heterogeneous core configurations with three and five fuel variations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.298202

Keywords:

comparative, fuel variations, Gas-cooled Fast Reactor, heterogeneous, keff, reactor core

Abstract

GFR or Gas-cooled Fast Reactor is one type of fast generation-IV that uses a very high cooling temperature. Thus, it is necessary to have the right reactor core design so that the power distribution of neutrons produced reaches a safe and even limit point. The use of a uniform (homogeneous) reactor core can produce peaking power. This is very avoidable because it will cause a reactor accident. In this study, researchers tried to compare the results of the analysis for two heterogeneous reactor core designs including the configuration of 3 fuel variations and 5 fuel variations using UN-PuN fuel. This study aims to determine the keff value produced by both types of fuel variations during 5 years of burn-up and determine the characteristics of neutron flux, fission rate, and fission product during 15 years of burn-up. This study was started by calculating the homogeneous and heterogeneous core of 3 and 5 fuel variations with neutron transport simulation involving OpenMC. The calculation results show that the heterogeneous core configuration of 5 fuel variations for the keff value is more optimal than 3 fuel variations, because it has the smallest excess reactivity value. The neutron flux and fission rate characteristics for 5 fuel variations are more evenly distributed when compared to 3 fuel variations to maintain neutron lifetime and reactor life in operation. Burn-up residual plutonium material and minor actinide waste for 5 fuel variations have less mass than 3 fuel variations. The results of neutronic analysis of GFR reactors with heterogeneous reactor core designs for 5 fuel variations are better in terms of reactor criticality, neutron power distribution, and waste produced. Finally, optimization of the UN-PuN fuel volume fraction of 60 % provides the optimal keff value

Supporting Agency

  • The authors thanks to Direktorat Riset, Teknologi, dan Pengabdian kepada Masyarakat for the support by Hibah Pascasarjana Penelitian Tesis Magister (PPS-PTM) 2023 with the agreement number No. 5453/UN25.3.1/LT/2023.

Author Biographies

Fajri Prasetya, University of Jember

Bachelor of Physics

Department of Physics

Ratna Dewi Syarifah, University of Jember

Doctor of Physics

Department of Physics

Iklimatul Karomah, University of Jember

Master of Physics

Department of Physics

Indarta Kuncoro Aji, PT. Kakiatna Indonesia and Phylion Battery Co. Ltd

Doctor of Engineering

Postdoctoral Research Associate

Directur

Nuri Trianti, National Research and Innovation Agency

Doctor of Physics

Nuclear Reactor Technology

References

  1. Syarifah, R. D., Sari, A. K., Arkundato, A., Irwanto, D., Su’ud, Z. (2022). Neutronics analysis of UN-PuN fuel for 300MW pressurized water reactor using SRAC-COREBN code. EUREKA: Physics and Engineering, 6, 12–23. https://doi.org/10.21303/2461-4262.2022.002247
  2. Outlook Energi Indonesia 2021. Available at: https://www.slideshare.net/GbpGugun/bppt-outlook-energi-indonesia-2021pdf-260770253
  3. Technology Roadmap Update for Generation IV Nuclear Energy Systems (2014). Gen IV International Forum. Available at: https://www.gen-4.org/gif/upload/docs/application/pdf/2014-03/gif-tru2014.pdf
  4. Goldberg, S. M., Rosner, R. (2011). Nuclear Reactors: Generation to Generation. American Academy of Arts and Sciences. Available at: https://www.amacad.org/sites/default/files/academy/pdfs/nuclearReactors.pdf
  5. Syarifah, R. D., Su’ud, Z., Basar, K., Irwanto, D., Pattipawaej, S. C., Ilham, M. (2017). WITHDRAWN: Comparison of uranium plutonium nitride (Usingle bondPusingle bondN) and thorium nitride (Thsingle bondN) fuel for 500 MWth Gas Cooled Fast Reactor (GFR) longlife without refueling. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2017.07.183
  6. DOE Fundamentals Handbook Nuclear Physics and Reactor Theory. Volume 2 of 2 (1993). Department of Energy Washington DC. Available at: http://large.stanford.edu/courses/2014/ph241/alnoaimi2/docs/Nuclear-Volume2.pdf
  7. Lestari, M. A., Fitriyani, D. (2014). Pengaruh Bahan Bakar UN-PuN, UC-PuC dan MOX terhadap Nilai Breeding Ratio pada Reaktor Pembiak Cepat. Jurnal Fisika Unand, 3 (1), 14–19. Available at: http://jfu.fmipa.unand.ac.id/index.php/jfu/article/view/60
  8. Stainsby, R., Peers, K., Mitchell, C., Poette, C., Mikityuk, K., Somers, J. (2011). Gas cooled fast reactor research in Europe. Nuclear Engineering and Design, 241 (9), 3481–3489. https://doi.org/10.1016/j.nucengdes.2011.08.005
  9. Dumaz, P., Allègre, P., Bassi, C., Cadiou, T., Conti, A., Garnier, J. C. et al. (2007). Gas-cooled fast reactors—Status of CEA preliminary design studies. Nuclear Engineering and Design, 237 (15-17), 1618–1627. https://doi.org/10.1016/j.nucengdes.2007.03.018
  10. Raflis, H., Ilham, M., Su’ud, Z., Waris, A., Irwanto, D. (2021). Core Configuration Analysis for Modular Gas-cooled Fast Reactor (GFR) using OpenMC. Journal of Physics: Conference Series, 2072 (1), 012007. https://doi.org/10.1088/1742-6596/2072/1/012007
  11. Syarifah, R. D., Yulianto, Y., Su’ud, Z., Basar, K., Irwanto, D. (2017). Neutronic Analysis of Thorium Nitride (Th, U233)N Fuel for 500MWth Gas Cooled Fast Reactor (GFR) Long Life without Refueling. Key Engineering Materials, 733, 47–50. https://doi.org/10.4028/www.scientific.net/kem.733.47
  12. Ilham, M., Raflis, H., Suud, Z. (2021). Fuel Assembly Design Study for Modular Gas Cooled Fast Reactor using Monte Carlo Parallelization Method. Journal of Physics: Conference Series, 1772, 012025. https://doi.org/10.1088/1742-6596/1772/1/012025
  13. Syarifah, R. D., Su’ud, Z., Basar, K., Irwanto, D. (2018). Neutronic Analysis of UN-PuN Fuel use FI-ITB-CHI Code for 500MWth GFR Long Life Without Refueling. Journal of Physics: Conference Series, 1090, 012033. https://doi.org/10.1088/1742-6596/1090/1/012033
  14. Syarifah, R. D., Aula, M. H., Arkundato, A., Nugroho, A. T. (2023). Design Study of 300 MWth GFR with UN-PuN Fuel using SRAC-COREBN Code. ARPN Journal of Engineering and Applied Science, 18 (4), 264–270. Available at: https://repository.unej.ac.id/jspui/bitstream/123456789/116091/1/MIPA_JURNAL_Design%20Study%20of%20300MWth%20GFR%20with%20UN-PuN%20Fuel%20using%20SRAC-COREBN%20Code.pdf
  15. Novalianda, S. (2019). Power Flattening Desain Reaktor GFR Berbasis Bahan Bakar Uranium Plutonium Nitride (U, Pu)N. Journal of Electrical Technology, 4 (3), 140–143. Available at: https://jurnal.uisu.ac.id/index.php/jet/article/view/2070/1469
  16. Dewi Syarifah, R., Su’ud, Z., Basar, K., Irwanto, D. (2017). Fuel Fraction Analysis of 500 MWth Gas Cooled Fast Reactor with Nitride (UN-PuN) Fuel without Refueling. Journal of Physics: Conference Series, 799, 012022. https://doi.org/10.1088/1742-6596/799/1/012022
  17. Raflis, H., Ilham, M., Su’ud, Z., Waris, A., Irwanto, D. (2020). Neutronic Analysis of Modular Gas-cooled Fast Reactor for 5-25% of Plutonium Fuel using Parallelization MCNP6 Code. Journal of Physics: Conference Series, 1493 (1), 012008. https://doi.org/10.1088/1742-6596/1493/1/012008
  18. Karomah, I., Mabruri, A. M., Syarifah, R. D., Trianti, N. (2023). Analysis of core configuration for conceptual gas Cooled Fast Reactor (GFR) using OpenMC. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega, 25 (2), 85. https://doi.org/10.55981/tdm.2023.6879
  19. The OpenMC Monte Carlo Code. OpenMC. Available at: https://docs.openmc.org/en/stable/
  20. Romano, P. K., Horelik, N. E., Herman, B. R., Nelson, A. G., Forget, B., Smith, K. (2015). OpenMC: A state-of-the-art Monte Carlo code for research and development. Annals of Nuclear Energy, 82, 90–97. https://doi.org/10.1016/j.anucene.2014.07.048
  21. Syarifah, R. D., Aula, M. H., Ardianingrum, A., Janah, L. N., Maulina, W. (2022). Comparison of thorium nitride and uranium nitride fuel on small modular pressurized water reactor in neutronic analysis using SRAC code. Eastern-European Journal of Enterprise Technologies, 2 (8 (116)), 21–28. https://doi.org/10.15587/1729-4061.2022.255849
  22. Waltar, A. E., Reynalds, A. B. (1981). Fast Breeder Reactors. Pergamon Press. Available at: https://books.google.com.ua/books?hl=ru&lr=&id=4m6o1jMcIIIC&oi=fnd&pg=PR2&ots=cinb2vV2WU&sig=R8t2K0BrZ1oY5K4ek4-51xnOZzM&redir_esc=y#v=onepage&q&f=false
  23. Advances in Small Modular Reactor Technology Developments (2018). IAEA. Available at: https://aris.iaea.org/Publications/SMR-Book_2018.pdf
  24. Ilham, M., Raflis, H., Suud, Z. (2020). Full Core Optimization of Small Modular Gas-Cooled Fast Reactors Using OpenMC Program Code. Journal of Physics: Conference Series, 1493 (1), 012007. https://doi.org/10.1088/1742-6596/1493/1/012007
  25. Raflis, H., Muhammad, I., Su’ud, Z., Waris, A., Irwanto, D. (2021). Reflector Materials Selection for Core Design of Modular Gas-cooled Fast Reactor using OpenMC Code. International Journal of Energy Research, 45 (8), 12071–12085. https://doi.org/10.1002/er.6042
  26. Harsanti, D. (2010). Sintesis dan Karakterisasi Boron Karbida dari Asam Borat, Asam Sitrat dan Karbon Aktif. Jurnal Sains & Teknologi Modifikasi Cuaca, 11 (1), 29. https://doi.org/10.29122/jstmc.v11i1.2178
  27. Mabruri, A. M., Syarifah, R. D., Aji, I. K., Hanifah, Z., Arkundato, A., Jatisukamto, G. (2022). Neutronic analysis on molten salt reactor FUJI-12 using 235U as fissile material in LiF-BeF2-UF4 fuel. Eastern-European Journal of Enterprise Technologies, 5 (8 (119)), 6–12. https://doi.org/10.15587/1729-4061.2022.265798
  28. Pattipawaej, S. C., Su’ud, Z. (2018). Preliminary Study of Long-life GFR 100 and 150 MWth. Journal of Physics: Conference Series, 1090, 012073. https://doi.org/10.1088/1742-6596/1090/1/012073
A comparative analysis of gas-cooled fast reactor using heterogeneous core configurations with three and five fuel variations

Downloads

Published

2024-02-28

How to Cite

Prasetya, F., Syarifah, R. D., Karomah, I., Aji, I. K., & Trianti, N. (2024). A comparative analysis of gas-cooled fast reactor using heterogeneous core configurations with three and five fuel variations. Eastern-European Journal of Enterprise Technologies, 1(8 (127), 6–17. https://doi.org/10.15587/1729-4061.2024.298202

Issue

Section

Energy-saving technologies and equipment