Smart charging process development based on ant colony optimization machine learning for controlling lead-acid battery charging capacity

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.299582

Keywords:

smart charging, ant colony optimization, machine learning, lead acid battery

Abstract

The Indonesian government has targeted 2.1 million two-wheeled electric vehicles and 2,200 four-wheeled electric vehicles (EV) by 2025. This is hampered by limited electricity supply and EV charging, which takes long time. Multi device interleaved DC-DC bidirectional converter has been applied and assessed as the most suitable method for battery EV and plug-in hybrid EV because it produces high power >10 kW. For power below 10 kW, it is recommended to use a sinusoidal, Z-Source, and boost amplifier type converter. The smart charging (SC) system will be applied to electric vehicles, which only require a minimum charging power of around 169 W for four lead acid batteries. This paper focuses on an SC system that is capable of charging the battery quickly while still paying attention to the state of health (SoH) of the battery. The SC developed uses a DC-DC boost converter to increase the voltage produced by the switch mode power supply (SMPS). Estimated charging time is less than 30 minutes and still pay attention to the battery SoH. SC will also use pulse width modulation (PWM) as a duty power cycle regulator. This research applies a multi-layer perceptron (MLP) classifier to a neural network (NN). The results of the research show that smart charging can charge up to 600 W with an estimated charging time of around 11 minutes. The charging condition is above 60 % and the power duty cycle setting is 100 %. The power estimation results processed using the ant colony optimization (ACO) based neural network method show a root mean square deviation value of 0.010013430 for charging four lead acid batteries. These results are useful to help solve the problem of capacity requirements and battery charging speed for EVs, with good SoH

Author Biographies

Selamat Muslimin, Sriwijaya University

Magister of Computer, Associate Professor

Department of Engineering Science

Zainuddin Nawawi, Sriwijaya University

Professor of Electrical Engineering

Department of Electrical Engineering

Bhakti Yudho Suprapto, Sriwijaya University

Doctor of Electrical Engineering, Associate Professor

Department of Electrical Engineering

Tresna Dewi, Sriwijaya University

Doctor of Electrical Engineering, Associate Professor

Department of Electrical Engineering

References

  1. Sun, X., Li, Z., Wang, X., Li, C. (2019). Technology Development of Electric Vehicles: A Review. Energies, 13 (1), 90. https://doi.org/10.3390/en13010090
  2. Li, Z., Khajepour, A., Song, J. (2019). A comprehensive review of the key technologies for pure electric vehicles. Energy, 182, 824–839. https://doi.org/10.1016/j.energy.2019.06.077
  3. Utami, M. W. D., Yuniaristanto, Y., Sutopo, W. (2020). Adoption Intention Model of Electric Vehicle in Indonesia. Jurnal Optimasi Sistem Industri, 19 (1), 70–81. https://doi.org/10.25077/josi.v19.n1.p70-81.2020
  4. Bozhkov, S. (2021). Structure of the Model of Hybrid Electric Vehicle Energy Efficiency. Trans Motauto World, 6 (3), 76–79. https://stumejournals.com/journals/tm/2021/3/76
  5. Ehsani, M., Singh, K. V., Bansal, H. O., Mehrjardi, R. T. (2021). State of the Art and Trends in Electric and Hybrid Electric Vehicles. Proceedings of the IEEE, 109 (6), 967–984. https://doi.org/10.1109/jproc.2021.3072788
  6. Arif, S. M., Lie, T. T., Seet, B. C., Ayyadi, S., Jensen, K. (2021). Review of Electric Vehicle Technologies, Charging Methods, Standards and Optimization Techniques. Electronics, 10 (16), 1910. https://doi.org/10.3390/electronics10161910
  7. Mohamed, N., Aymen, F., Ali, Z. M., Zobaa, A. F., Abdel Aleem, S. H. E. (2021). Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy. Sustainability, 13 (13), 7351. https://doi.org/10.3390/su13137351
  8. Nieuwenhuis, P., Cipcigan, L., Berkem Sonder, H. (2020). The Electric Vehicle Revolution. Future Energy, 227–243. https://doi.org/10.1016/b978-0-08-102886-5.00011-6
  9. Muslimin, S., Maulidda, R., Nawawi, M., Rahman, A., Kurnia, P. M. (2023). The Method of Constant Current - Constant Voltage (CC – CV) for SECA Electric Car Battery Charging with Fuzzy Logic Controller. Atlantis Highlights in Engineering, 14–23. https://doi.org/10.2991/978-94-6463-118-0_3
  10. Carter, R., Cruden, A., Hall, P. J., Zaher, A. S. (2012). An Improved Lead–Acid Battery Pack Model for Use in Power Simulations of Electric Vehicles. IEEE Transactions on Energy Conversion, 27 (1), 21–28. https://doi.org/10.1109/tec.2011.2170574
  11. B (2015). Dictionary of Energy, 41–81. https://doi.org/10.1016/b978-0-08-096811-7.50002-0
  12. Bergveld, H. J., Kruijt, W. S., Notten, P. H. L. (2002). Battery Management Systems. Springer Netherlands. https://doi.org/10.1007/978-94-017-0843-2
  13. Adityawan, A. P., Cahya, D. D., Sulistijono, L., Madyono (2013). Sistem Pengisian Batteray Lead Acid Secara Adaptive. PENS-ITS Sukolilo, 5 (1).
  14. Achaibou, N., Haddadi, M., Malek, A. (2008). Lead acid batteries simulation including experimental validation. Journal of Power Sources, 185 (2), 1484–1491. https://doi.org/10.1016/j.jpowsour.2008.06.059
  15. Setiaji, B., Dwiono, W., Tamam, M. T. (2020). Rancang Bangun Pengisi Baterai Lead Acid Dan Li-Ion Secara Otomatis Menggunakan Mikrokontroler PIC 16F877A Bersumber Energi Matahari Dengan Pengendali PI. Jurnal Riset Rekayasa Elektro, 1 (2). https://doi.org/10.30595/jrre.v1i2.5187
  16. Shahriari, M., Farrokhi, M. (2013). Online State-of-Health Estimation of VRLA Batteries Using State of Charge. IEEE Transactions on Industrial Electronics, 60 (1), 191–202. https://doi.org/10.1109/tie.2012.2186771
  17. Baterai Asam-Timbal. Dede Hendriono. Available at: https://henduino.github.io/library/ototronik/leadacid/
  18. Thowil Afif, M., Ayu Putri Pratiwi, I. (2015). Analisis Perbandingan Baterai Lithium-Ion, Lithium-Polymer, Lead Acid dan Nickel-Metal Hydride pada Penggunaan Mobil Listrik - Review. Jurnal Rekayasa Mesin, 6 (2), 95–99. https://doi.org/10.21776/ub.jrm.2015.006.02.1
  19. Wang, L., Qin, Z., Slangen, T., Bauer, P., van Wijk, T. (2021). Grid Impact of Electric Vehicle Fast Charging Stations: Trends, Standards, Issues and Mitigation Measures - An Overview. IEEE Open Journal of Power Electronics, 2, 56–74. https://doi.org/10.1109/ojpel.2021.3054601
  20. Town, G., Taghizadeh, S., Deilami, S. (2022). Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning. Energies, 15 (4), 1276. https://doi.org/10.3390/en15041276
  21. Sidiq, R. K. (2015). Rancang Bangun Sistem Pengisi Baterai Mobil Listrik Berbasis Mikrokontroller Atmega16. Universitas Jember. Available at: https://repository.unej.ac.id/bitstream/handle/123456789/73490/111910201039--ROHMAT%20KHOIRUL%20SIDIQ-1-56.pdf?sequence=1&isAllowed=y
  22. Yusuf Margowadi, R. A. N., Samodra, B., Dawam, M. D. N. (2021). Pengembangan Pengisi Baterai Cepat 72 Volt Untuk Charging Station Kendaraan Listrik Roda Dua. Seminar Teknologi Bahan Dan Barang Teknik 2020, 49–54.
  23. Prianto, E., Yuniarti, N., Nugroho, D. C. (2020). Boost-converter sebagai alat pengisian baterai pada sepeda listrik secara otomatis. Jurnal Edukasi Elektro, 4 (1). https://doi.org/10.21831/jee.v4i1.32632
  24. Camacho, O. M. F., Mihet-Popa, L. (2016). Tests de recharge rapide et intelligente de batteries pour voitures électriques utilisant des énergies renouvelables. Oil and Gas Science and Technology, 71 (1).
  25. Syafii, Mayura, Y., El Gazaly, A. (2019). Characteristics of Lead-Acid Battery Charging and Discharging Against Residential Load in Tropical Area. 2019 16th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering. https://doi.org/10.1109/qir.2019.8898277
  26. Catherino, H. A., Burgel, J. F., Rusek, A., Feres, F. (1999). Modelling and simulation of lead-acid battery charging. Journal of Power Sources, 80 (1-2), 17–20. https://doi.org/10.1016/s0378-7753(98)00248-1
  27. Sadeghian, O., Oshnoei, A., Mohammadi-ivatloo, B., Vahidinasab, V., Anvari-Moghaddam, A. (2022). A comprehensive review on electric vehicles smart charging: Solutions, strategies, technologies, and challenges. Journal of Energy Storage, 54, 105241. https://doi.org/10.1016/j.est.2022.105241
  28. Xing, Y., Li, F., Sun, K., Wang, D., Chen, T., Zhang, Z. (2022). Multi-type electric vehicle load prediction based on Monte Carlo simulation. Energy Reports, 8, 966–972. https://doi.org/10.1016/j.egyr.2022.05.264
  29. Mololoth, V. K., Saguna, S., Åhlund, C. (2023). Blockchain and Machine Learning for Future Smart Grids: A Review. Energies, 16 (1), 528. https://doi.org/10.3390/en16010528
  30. Esmalifalak, M., Liu, L., Nguyen, N., Zheng, R., Han, Z. (2017). Detecting Stealthy False Data Injection Using Machine Learning in Smart Grid. IEEE Systems Journal, 11 (3), 1644–1652. https://doi.org/10.1109/jsyst.2014.2341597
  31. Teichgraeber, H., Brandt, A. R. (2019). Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison. Applied Energy, 239, 1283–1293. https://doi.org/10.1016/j.apenergy.2019.02.012
  32. Sakhnini, J., Karimipour, H., Dehghantanha, A., Parizi, R. M. (2021). Physical layer attack identification and localization in cyber–physical grid: An ensemble deep learning based approach. Physical Communication, 47, 101394. https://doi.org/10.1016/j.phycom.2021.101394
  33. Javaid, N., Jan, N., Javed, M. U. (2021). An adaptive synthesis to handle imbalanced big data with deep siamese network for electricity theft detection in smart grids. Journal of Parallel and Distributed Computing, 153, 44–52. https://doi.org/10.1016/j.jpdc.2021.03.002
  34. Pallonetto, F., De Rosa, M., Milano, F., Finn, D. P. (2019). Demand response algorithms for smart-grid ready residential buildings using machine learning models. Applied Energy, 239, 1265–1282. https://doi.org/10.1016/j.apenergy.2019.02.020
  35. Srdic, S., Lukic, S. (2019). Toward Extreme Fast Charging: Challenges and Opportunities in Directly Connecting to Medium-Voltage Line. IEEE Electrification Magazine, 7 (1), 22–31. https://doi.org/10.1109/mele.2018.2889547
  36. Ronanki, D., Kelkar, A., Williamson, S. S. (2019). Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation. Energies, 12 (19), 3721. https://doi.org/10.3390/en12193721
  37. Tu, H., Feng, H., Srdic, S., Lukic, S. (2019). Extreme Fast Charging of Electric Vehicles: A Technology Overview. IEEE Transactions on Transportation Electrification, 5 (4), 861–878. https://doi.org/10.1109/tte.2019.2958709
  38. Ant colony optimization (2007). Handbook of Approximation Algorithms and Metaheuristics. Available at: https://www.taylorfrancis.com/chapters/mono/10.1201/9781420010749-33/ant-colony-optimization-teofilo-gonzalez?context=ubx&refId=21abeb5d-2476-4646-acdf-25c398f93e16
  39. Kao, Y., Cheng, K. (2006). An ACO-Based Clustering Algorithm. Lecture Notes in Computer Science, 340–347. https://doi.org/10.1007/11839088_31
  40. Dorigo, M., Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1 (1), 53–66. https://doi.org/10.1109/4235.585892
Smart charging process development based on ant colony optimization machine learning for controlling lead-acid battery charging capacity

Downloads

Published

2024-06-28

How to Cite

Muslimin, S., Nawawi, Z., Suprapto, B. Y., & Dewi, T. (2024). Smart charging process development based on ant colony optimization machine learning for controlling lead-acid battery charging capacity. Eastern-European Journal of Enterprise Technologies, 3(5 (129), 52–64. https://doi.org/10.15587/1729-4061.2024.299582

Issue

Section

Applied physics