Electrochemical characteristic and microstructure of Ti-6Al-7Nb alloy by centrifugal casting for orthopedic implant based on ageing time variations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.302614

Keywords:

orthopedic implant, titanium alloy, ageing time, microstructure, corrosion resistance

Abstract

The alternative Ti-6Al-7Nb alloy has gained extensive progression due to its ability to eliminate the cytotoxicity of vanadium (V) in Ti-6Al-4V alloy for orthopedic implants. The production of titanium alloys by centrifugal casting shows significant potential to reduce costs. Heat treatment and aging can tailor the microstructure and improve the corrosion resistance of titanium alloys. This study examines the effects of various ageing times on the microstructure and corrosion resistance of a centrifugal cast Ti-6Al-7Nb alloy that has previously been heated and treated at a temperature of 1050 °C, and subsequently cooled to room temperature in argon atmosphere gas. Ageing was carried out at a temperature of 550 °C with variable times of 0, 4, 6, and 8 hours. The surface morphology, metal phase changes, and electrochemical characterization were tested using an optical microscope (OM), X-ray diffraction (XRD), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The basket-weave microstructure is formed where globularization occurs in some phases as ageing time increases. Increasing the FWHM α value is correlated with increasing the amount of α' martensite phase. As an ageing time enhances, the temperature might offer a greater driving constrain for the nucleation and expansion of the lamellar phase (α). Ageing of 8 hours has the lowest corrosion rate, 0.0023 mpy and highest corrosion resistance, 90457 Ω∙cm2, due to the partially bimodal structure and grain refinement with a smallest grain size of 327.87 µm. Tafel polarization results show that all passivated samples are stable in the Solution Body Fluid (SBF). This work can be used as a starting point for developing microstructural evolution in titanium alloys

Author Biographies

Anjar Oktikawati, Universitas Indonesia

Postgraduate Student

Department of Metallurgy and Material Engineering

Rini Riastuti, Universitas Indonesia

Profesor of Engineering, Lecturer

Department of Metallurgy and Material Engineering

Damisih Damisih, National Research and Innovation Agency (BRIN)

Master of Engineering, Researcher

Center of Technology for Material

I Nyoman Jujur, National Research and Innovation Agency (BRIN)

Doctor of Engineering, Researcher

Center of Technology for Material

Agus Paul Setiawan Kaban, Universitas Indonesia

Doctoral student, Researcher

Prof. Johny Wahyuadi Laboratory

Department of Metallurgical and Materials Engineering

References

  1. Davis, J. R. (1998). Metals Handbook Desk Edition. It was prepared under the direction of the ASM International Handbook Committee.
  2. Leyens, C., Peters, M. (Eds.) (2003). Titanium and Titanium Alloys. Wiley. https://doi.org/10.1002/3527602119
  3. Whittaker, M. (2018). Titanium Alloys 2017. Metals, 8 (5), 319. https://doi.org/10.3390/met8050319
  4. Froes, F. H. (2015). TITANIUM Physical Metallurgy Processing and Applications. ASM. Available at: https://www.asminternational.org/wp-content/uploads/files/39989767/39989767-toc.pdf
  5. Choubey, A., Balasubramaniam, R., Basu, B. (2004). Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti–6Al–4V in simulated physiological environment. Journal of Alloys and Compounds, 381 (1-2), 288–294. https://doi.org/10.1016/j.jallcom.2004.03.096
  6. Tamilselvi, S., Raman, V., Rajendran, N. (2006). Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochimica Acta, 52 (3), 839–846. https://doi.org/10.1016/j.electacta.2006.06.018
  7. Ndukwe, A. I. (2022). Review of Recent Findings on Investment Casting of Titanium Alloys. Academic Journal of Manufacturing Engineering, 20 (2), 99–108. Available at: https://www.ajme.ro/PDF_AJME_2022_2/L12.pdf
  8. Su, B., Luo, L., Wang, B., Su, Y., Wang, L., Ritchie, R. O. et al. (2021). Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy. Journal of Materials Science & Technology, 62, 234–248. https://doi.org/10.1016/j.jmst.2020.05.058
  9. Gu, B., Chekhonin, P., Xin, S. W., Liu, G. Q., Ma, C. L., Zhou, L., Skrotzki, W. (2021). Microstructure and texture development during hot-compression of Ti5321. Materials Characterization, 179, 111297. https://doi.org/10.1016/j.matchar.2021.111297
  10. Hulka, I., Florido-Suarez, N. R., Mirza-Rosca, J. C., Saceleanu, A. (2022). Mechanical Properties and Corrosion Behavior of Thermally Treated Ti-6Al-7Nb Dental Alloy. Materials, 15 (11), 3813. https://doi.org/10.3390/ma15113813
  11. Lei, L., Zhao, Y., Zhao, Q., Wu, C., Huang, S., Jia, W., Zeng, W. (2021). Impact toughness and deformation modes of Ti–6Al–4V alloy with different microstructures. Materials Science and Engineering: A, 801, 140411. https://doi.org/10.1016/j.msea.2020.140411
  12. Yao, L., He, Y., Wang, Z., Peng, B., Li, G., Liu, Y. (2021). Effect of Heat Treatment on the Wear Properties of Selective Laser Melted Ti–6Al–4V Alloy Under Different Loads. Acta Metallurgica Sinica (English Letters), 35 (3), 517–525. https://doi.org/10.1007/s40195-021-01280-8
  13. Tian, Y., Li, S., Hao, Y., Yang, R. (2013). High temperature deformation behavior and microstructure evolution mechanism transformation in Ti2448 alloy. Acta Metallurgica Sinica, 48 (7), 837–844. https://doi.org/10.3724/sp.j.1037.2012.00007
  14. Wang, G., Zhao, Z., Yu, B., Chen, Z., Wang, Q., Yang, R. (2017). Effect of Heat Treatment Process on Microstructure and Mechanical Properties of Titanium Alloy Ti6246. Chinese Journal of Materials Research, 31 (5), 352–358. https://doi.org/10.11901/1005.3093.2016.621
  15. Lee, C. S., Kim, M. G., Kim, G.-H., Kim, K.-T., Hwang, D., Kim, H. S. (2019). Corrosion Properties of Ultra-Fine-Grained Cu-3 wt%Ti Alloy Fabricated by Combination of Hot Rolling and Aging Treatment. Journal of Nanoscience and Nanotechnology, 19 (10), 6487–6492. https://doi.org/10.1166/jnn.2019.17071
  16. Avinash, D., Leo Kumar, S. P. (2021). Investigations on surface-integrity and mechanical properties of biocompatible grade Ti-6Al-7Nb alloy. Materials Technology, 37 (9), 897–905. https://doi.org/10.1080/10667857.2021.1903671
  17. Gao, K., Zhang, Y., Yi, J., Dong, F., Chen, P. (2024). Overview of Surface Modification Techniques for Titanium Alloys in Modern Material Science: A Comprehensive Analysis. Coatings, 14 (1), 148. https://doi.org/10.3390/coatings14010148
  18. Yang, X., Dong, X., Li, W., Feng, W., Xu, Y. (2020). Effect of solution and aging treatments on corrosion performance of laser solid formed Ti-6Al-4V alloy in a 3.5 wt. % NaCl solution. Journal of Materials Research and Technology, 9 (2), 1559–1568. https://doi.org/10.1016/j.jmrt.2019.11.082
  19. Senopati, G., Rahman Rashid, R. A., Kartika, I., Palanisamy, S. (2023). Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications: A Review. Metals, 13 (2), 194. https://doi.org/10.3390/met13020194
  20. Li, X. X., Zhou, Y., Ji, X. L., Li, Y. X., Wang, S. Q. (2015). Effects of sliding velocity on tribo-oxides and wear behavior of Ti–6Al–4V alloy. Tribology International, 91, 228–234. https://doi.org/10.1016/j.triboint.2015.02.009
  21. Khun, N. W., Tan, A. W. Y., Bi, K. J. W., Liu, E. (2016). Effects of working gas on wear and corrosion resistances of cold sprayed Ti-6Al-4V coatings. Surface and Coatings Technology, 302, 1–12. https://doi.org/10.1016/j.surfcoat.2016.05.052
  22. Weng, F., Yu, H., Chen, C., Liu, J., Zhao, L., Dai, J., Zhao, Z. (2017). Effect of process parameters on the microstructure evolution and wear property of the laser cladding coatings on Ti-6Al-4V alloy. Journal of Alloys and Compounds, 692, 989–996. https://doi.org/10.1016/j.jallcom.2016.09.071
  23. Marenych, O. O., Ding, D., Pan, Z., Kostryzhev, A. G., Li, H., van Duin, S. (2018). Effect of chemical composition on microstructure, strength and wear resistance of wire deposited Ni-Cu alloys. Additive Manufacturing, 24, 30–36. https://doi.org/10.1016/j.addma.2018.08.003
  24. Sieniawski, J., Ziaja, W., Kubiak, K., Motyk, M. (2013). Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys. Titanium Alloys - Advances in Properties Control. https://doi.org/10.5772/56197
  25. Guan, S., Solberg, K., Wan, D., Berto, F., Welo, T., Yue, T. M., Chan, K. C. (2019). Formation of fully equiaxed grain microstructure in additively manufactured AlCoCrFeNiTi0.5 high entropy alloy. Materials & Design, 184, 108202. https://doi.org/10.1016/j.matdes.2019.108202
  26. Yan, C., Hao, L., Hussein, A., Young, P. (2015). Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 51, 61–73. https://doi.org/10.1016/j.jmbbm.2015.06.024
  27. Matthew, J., Donachie, M. (2001). Heat treating titanium and its alloys. HEAT TREATIN G PRO G RESS. Available at: https://www.academia.edu/32143147/Titanium_A_Technical_Guide
  28. Bălţatu, M. S., Vizureanu, P., Bălan, T., Lohan, M., Ţugui, C. A. (2018). Preliminary Tests for Ti-Mo-Zr-Ta Alloys as Potential Biomaterials. IOP Conference Series: Materials Science and Engineering, 374, 012023. https://doi.org/10.1088/1757-899x/374/1/012023
  29. Semiatin, S. L. (2020). An Overview of the Thermomechanical Processing of α/β Titanium Alloys: Current Status and Future Research Opportunities. Metallurgical and Materials Transactions A, 51 (6), 2593–2625. https://doi.org/10.1007/s11661-020-05625-3
  30. Zuo, H., Deng, H., Zhou, L., Qiu, W., Xu, P., Wei, Y. et al. (2022). The effect of heat treatment on corrosion behavior of selective laser melted Ti-5Al-5Mo-5V-3Cr-1Zr alloy. Surface and Coatings Technology, 445, 128743. https://doi.org/10.1016/j.surfcoat.2022.128743
  31. Seo, S., Park, J. (2023). Annealing Heat Treatment for Homogenizing the Microstructure and Mechanical Properties of Electron-Beam-Welded Thick Plate of Ti-6Al-4V Alloy. Materials, 16 (23), 7423. https://doi.org/10.3390/ma16237423
  32. Winda Sari, M. (2019). Studi pengaruh temperatur solution treatment dan waktu aging terhadap sifat mekanik serta ketahanan korosi pada paduan implan biomedis Ti-6Al-7Nb hasil centrifugal casting. S1 thesis, Universitas Sultan Ageng Tirtayasa. Available at: https://eprints.untirta.ac.id/6046/
  33. Yang, Z., Li, J., Zhang, B., Li, J. (2022). Microstructures and mechanical properties of a titanium alloy thick plate joint after electron beam welding plus solution-aging. Journal of Materials Research and Technology, 19, 913–922. https://doi.org/10.1016/j.jmrt.2022.05.091
  34. Muniz, F. T. L., Miranda, M. A. R., Morilla dos Santos, C., Sasaki, J. M. (2016). The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section A Foundations and Advances, 72 (3), 385–390. https://doi.org/10.1107/s205327331600365x
  35. Su, B., Wang, B., Luo, L., Wang, L., Liu, C., Su, Y. et al. (2022). Tuning microstructure and improving the corrosion resistance of a Ti-6Al-3Nb-2Zr-1Mo alloy via solution and aging treatments. Corrosion Science, 208, 110694. https://doi.org/10.1016/j.corsci.2022.110694
  36. Liang, Z., Sun, Z., Zhang, W., Wu, S., Chang, H. (2019). The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy. Journal of Alloys and Compounds, 782, 1041–1048. https://doi.org/10.1016/j.jallcom.2018.12.051
  37. Xu, W., Brandt, M., Sun, S., Elambasseril, J., Liu, Q., Latham, K. et al. (2015). Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Materialia, 85, 74–84. https://doi.org/10.1016/j.actamat.2014.11.028
  38. Chanfreau, N., Poquillon, D., Stark, A., Maawad, E., Mareau, C., Dehmas, M. (2022). Phase transformation of the Ti-5553 titanium alloy subjected to rapid heating. Journal of Materials Science, 57 (9), 5620–5633. https://doi.org/10.1007/s10853-022-06959-6
  39. Xu, C., Sikan, F., Atabay, S. E., Muñiz-Lerma, J. A., Sanchez-Mata, O., Wang, X., Brochu, M. (2020). Microstructure and mechanical behavior of as-built and heat-treated Ti–6Al–7Nb produced by laser powder bed fusion. Materials Science and Engineering: A, 793, 139978. https://doi.org/10.1016/j.msea.2020.139978
  40. Yu, J., Yin, Z., Huang, Z., Zhao, S., Huang, H., Yu, K. et al. (2022). Effect of Aging Treatment on Microstructural Evolution and Mechanical Properties of the Electron Beam Cold Hearth Melting Ti-6Al-4V Alloy. Materials, 15 (20), 7122. https://doi.org/10.3390/ma15207122
  41. Lei, Z., Chen, Y., Ma, S., Zhou, H., Liu, J., Wang, X. (2020). Influence of aging heat treatment on microstructure and tensile properties of laser oscillating welded TB8 titanium alloy joints. Materials Science and Engineering: A, 797, 140083. https://doi.org/10.1016/j.msea.2020.140083
  42. Li, C.-L., Hong, J.-K., Narayana, P. L., Choi, S.-W., Lee, S. W., Park, C. H. et al. (2021). Realizing superior ductility of selective laser melted Ti-6Al-4V through a multi-step heat treatment. Materials Science and Engineering: A, 799, 140367. https://doi.org/10.1016/j.msea.2020.140367
  43. Mahadule, D., Khatirkar, R. K., Gupta, S. K., Gupta, A., Dandekar, T. R. (2022). Microstructure evolution and corrosion behaviour of a high Mo containing α + β titanium alloy for biomedical applications. Journal of Alloys and Compounds, 912, 165240. https://doi.org/10.1016/j.jallcom.2022.165240
  44. Scully, J., Silverman, D., Kendig, M. (Eds.) (1993). Electrochemical Impedance: Analysis and Interpretation. ASTM International. https://doi.org/10.1520/stp1188-eb
  45. Stępień, M., Handzlik, P., Fitzner, K. (2016). Electrochemical synthesis of oxide nanotubes on Ti6Al7Nb alloy and their interaction with the simulated body fluid. Journal of Solid State Electrochemistry, 20 (10), 2651–2661. https://doi.org/10.1007/s10008-016-3258-8
  46. Li, B. Q., Xie, R. Z., Lu, X. (2020). Microstructure, mechanical property and corrosion behavior of porous Ti–Ta–Nb–Zr. Bioactive Materials, 5 (3), 564–568. https://doi.org/10.1016/j.bioactmat.2020.04.014
  47. Mansfeld, F. (1990). Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection. Electrochimica Acta, 35 (10), 1533–1544. https://doi.org/10.1016/0013-4686(90)80007-b
  48. Boukamp, B. (1986). A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics, 20 (1), 31–44. https://doi.org/10.1016/0167-2738(86)90031-7
  49. Ibriş, N., Mirza Rosca, J. C. (2002). EIS study of Ti and its alloys in biological media. Journal of Electroanalytical Chemistry, 526 (1-2), 53–62. https://doi.org/10.1016/s0022-0728(02)00814-8
Electrochemical characteristic and microstructure of Ti-6Al-7Nb alloy by centrifugal casting for orthopedic implant based on ageing time variations

Downloads

Published

2024-04-30

How to Cite

Oktikawati, A., Riastuti, R., Damisih, D., Nyoman Jujur, I., & Paul Setiawan Kaban, A. (2024). Electrochemical characteristic and microstructure of Ti-6Al-7Nb alloy by centrifugal casting for orthopedic implant based on ageing time variations. Eastern-European Journal of Enterprise Technologies, 2(12 (128), 6–15. https://doi.org/10.15587/1729-4061.2024.302614

Issue

Section

Materials Science