Determining patterns of leaching titanium(IV) from the Irshansky deposit ilmenite

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.304661

Keywords:

ilmenite concentrate, alkaline leaching, potassium hydroxide, potassium titanate, degree of extraction

Abstract

The research object is the ilmenite concentrate from the Irshansky deposit. This study describes an elemental composition of the mineral raw material and confirms its structure using the X-ray diffraction and scanning electron microscopy. Experimental studies have shown that the ilmenite concentrate from the Irshansky deposit has a significant titanium content in terms of titanium dioxide (79 %). Mineral raw materials with such a chemical composition are unique, so there is a need to find alternative methods for its processing. The research demonstrates that the maximum degree of extraction in the process of alkaline leaching of the ilmenite concentrate is achieved under the condition that the average diameter of particles of the mineral raw material should be ≤71 μm. As a result of temperature studies, it has been found that a temperature of 453 K would suffice to obtain potassium titanate at atmospheric pressure. Further temperature increase does not provide for a significant increase in the degree of titanium extraction, and also contributes to the formation of polytitanates of various compositions. The study of the influence of the molar ratio of the starting reagents on the degree of extraction of titanium(IV) from the ilmenite concentrate has showed that the optimal molar ratio between the components corresponds to the stoichiometric one and is 1:2. Increasing the amount of potassium hydroxide in the reaction mixture is impractical as it reduces the yield of potassium titanate, and the final product will have high alkalinity due to excess alkali. The optimal time for alkaline leaching is three hours of continuous heating in a glycerin bath. A further increase in the duration of heating does not lead to an increase in the degree of extraction, which is associated with the diffusion of alkali from the surface of the nucleus into the volume of ilmenite particles due to the formed products of interaction and annihilation of the initial nuclei

Author Biographies

Snizhana Pysarenko, Zhytomyr Ivan Franko State University

PhD

Department of Chemistry

Oleksandr Kaminskyi, Scientific Lyceum of the Zhytomyr Ivan Franko State University

PhD, Associate Professor, Chemistry Teacher of the Highest Category

Roman Denysiuk, Zhytomyr Ivan Franko State University

PhD, Associate Professor

Department of Chemistry

Olena Yevdochenko, Zhytomyr Ivan Franko State University

PhD

Department of Chemistry

Olena Chyhyrynets, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Doctor of Technical Sciences, Professor

Department of Physical Chemistry

Olena Anichkina, Zhytomyr Ivan Franko State University

PhD, Associate Professor

Department of Chemistry

Olga Avdieieva, Scientific Lyceum of the Zhytomyr Ivan Franko State University

PhD, Associate Professor, Teacher

Yuliia Lysetska, Scientific Lyceum of the Zhytomyr Ivan Franko State University

English Teacher

References

  1. Dante, R. C. (2016). Abrasives, ceramic, and inorganic materials. Handbook of Friction Materials and Their Applications, 105–121. https://doi.org/10.1016/b978-0-08-100619-1.00008-0
  2. Asano, K., Yoneda, H., Agari, Y., Matsumuro, M., Higashi, K. (2015). Thermal and Mechanical Properties of Aluminum Alloy Composite Reinforced with Potassium Hexatitanate Short Fiber. Materials Transactions, 56 (1), 160–166. https://doi.org/10.2320/matertrans.m2014284
  3. Luo, R., Ni, Y., Li, J., Yang, C., Wang, S. (2011). The mechanical and thermal insulating properties of resin-derived carbon foams reinforced by K2Ti6O13 whiskers. Materials Science and Engineering: A, 528 (4-5), 2023–2027. https://doi.org/10.1016/j.msea.2010.10.106
  4. Escobedo Bretado, M. A., González Lozano, M. A., Collins Martínez, V., López Ortiz, A., Meléndez Zaragoza, M., Lara, R. H., Moreno Medina, C. U. (2019). Synthesis, characterization and photocatalytic evaluation of potassium hexatitanate (K2Ti6O13) fibers. International Journal of Hydrogen Energy, 44 (24), 12470–12476. https://doi.org/10.1016/j.ijhydene.2018.06.085
  5. Pysarenko, S., Kaminskyi, O., Chyhyrynets, O., Denysiuk, R., Chernenko, V. (2022). Photocatalytic destruction and adsorptive processes of methylene blue by potassium titanate. Materials Today: Proceedings, 62, 7754–7758. https://doi.org/10.1016/j.matpr.2022.05.476
  6. Salinas, D., Guerrero, S., Cross, A., Araya, P., Wolf, E. E. (2016). Potassium titanate for the production of biodiesel. Fuel, 166, 237–244. https://doi.org/10.1016/j.fuel.2015.10.127
  7. Huo, K., Zhao, J., Zhuang, J., Yao, Z., Hu, M., Wang, B. et al. (2024). Hydrothermal synthesis of lepidocrocite-like potassium lithium titanate K0.80Li0.267Ti1.733O4 (KLTO) with superior polarization performance. Chemical Engineering Journal, 482, 148783. https://doi.org/10.1016/j.cej.2024.148783
  8. Mineral commodity summaries 2022 (2022). US Geological Survey. https://doi.org/10.3133/mcs2022
  9. Thambiliyagodage, C., Wijesekera, R., Bakker, M. G. (2021). Leaching of ilmenite to produce titanium based materials: a review. Discover Materials, 1 (1). https://doi.org/10.1007/s43939-021-00020-0
  10. Liu, Y., Qi, T., Chu, J., Tong, Q., Zhang, Y. (2006). Decomposition of ilmenite by concentrated KOH solution under atmospheric pressure. International Journal of Mineral Processing, 81 (2), 79–84. https://doi.org/10.1016/j.minpro.2006.07.003
  11. Liu, Y., Lü, H., Qi, T., Zhang, Y. (2012). Extraction behaviours of titanium and other impurities in the decomposition process of ilmenite by highly concentrated KOH solution. International Journal of Minerals, Metallurgy, and Materials, 19 (1), 9–14. https://doi.org/10.1007/s12613-012-0508-3
  12. Nayl, A. A., Awwad, N. S., Aly, H. F. (2009). Kinetics of acid leaching of ilmenite decomposed by KOH. Journal of Hazardous Materials, 168 (2-3), 793–799. https://doi.org/10.1016/j.jhazmat.2009.02.076
  13. Nayl, A. A., Aly, H. F. (2009). Acid leaching of ilmenite decomposed by KOH. Hydrometallurgy, 97 (1-2), 86–93. https://doi.org/10.1016/j.hydromet.2009.01.011
  14. Kordzadeh-Kermani, V., Schaffie, M., Hashemipour Rafsanjani, H., Ranjbar, M. (2020). A modified process for leaching of ilmenite and production of TiO2 nanoparticles. Hydrometallurgy, 198, 105507. https://doi.org/10.1016/j.hydromet.2020.105507
  15. Yousef, L. A. (2017). Uranium Adsorption Using Iron-Titanium Mixed Oxides Separated from Ilmenite Mineral, Black Sands, Rosetta, Egypt. Arab Journal of Nuclear Sciences and Applications, 50 (3), 43–57.
  16. Amer, A. M. (2002). Alkaline pressure leaching of mechanically activated Rosetta ilmenite concentrate. Hydrometallurgy, 67 (1-3), 125–133. https://doi.org/10.1016/s0304-386x(02)00164-0
  17. Pysarenko, S. V., Chernenko, V. Yu., Chygyrynets, O. E., Kaminskiy, O. M., Myronyak, M. O. (2021). Alkaline leaching of titanium from ilmenite of Irshansk deposit. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 51–56. https://doi.org/10.32434/0321-4095-2021-139-6-51-56
  18. Pysarenko, S. V., Kaminskiy, O. M., Chyhyrynets, O. E., Chernenko, V. Yu., Myroniak, M. O., Shvalahin, V. V. (2022). Thermodynamics of leaching of leukoxenized ilmenite. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 83–87. https://doi.org/10.32434/0321-4095-2022-140-1-83-87
  19. Fouda, M. F. R., Amin, R. S., Saleh, H. I., Mousa, H. A. (2010). Extraction of Ultrafine Titania from Black Sands Broaden on the Mediterranean Sea Coast in Egypt by Molten Alkalies. Australian Journal of Basic and Applied Sciences, 4 (9), 4256–4265. Available at: https://www.ajbasweb.com/old/ajbas/2010/4256-4265.pdf
  20. Subagja, R., Andriyah, L., Hanum Lalasari, L. (2013). Decomposition of ilmenite from Bangka Island – Indonesia with KOH solutions. Asian Transactions on Basic and Applied Sciences, 3 (2), 59–64. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8b88ded1cc64a891b3992afc19f77e13fa1710ff
  21. Parirenyatwa, S., Escudero-Castejon, L., Sanchez-Segado, S., Hara, Y., Jha, A. (2016). Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals. Hydrometallurgy, 165, 213–226. https://doi.org/10.1016/j.hydromet.2015.08.002
  22. Pysarenko, S., Kaminskyi, O., Chyhyrynets, O., Denysiuk, R., Anichkina, O., Chernenko, V. (2023). Kinetics of alkaline leaching process of titanium (IV) from ilmenite. Journal of Chemical Technology and Metallurgy, 58 (6), 1146–1152. https://doi.org/10.59957/jctm.v58i6.155
  23. mp-13133. Materials Explorer. Available at: https://next-gen.materialsproject.org/materials/mp-13133/
Determining patterns of leaching titanium(IV) from the Irshansky deposit ilmenite

Downloads

Published

2024-06-28

How to Cite

Pysarenko, S., Kaminskyi, O., Denysiuk, R., Yevdochenko, O., Chyhyrynets, O., Anichkina, O., Avdieieva, O., & Lysetska, Y. (2024). Determining patterns of leaching titanium(IV) from the Irshansky deposit ilmenite. Eastern-European Journal of Enterprise Technologies, 3(12 (129), 28–35. https://doi.org/10.15587/1729-4061.2024.304661

Issue

Section

Materials Science