Identification of air targets using a hybrid clustering algorithm

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.314289

Keywords:

danger clustering, linear scaling, unsupervised learning, composite indicator, artificial intelligence, air danger

Abstract

The study addresses the task to improve the accuracy of clustering air raid danger levels by constructing a hybrid clustering algorithm.

A target air clustering algorithm has been developed, which involves using a modified distance metric and integrates air danger level assessments directly into the algorithm.

The reported features demonstrate superiority over existing algorithms based on the Silhouette and Davies-Bouldin indices. The proposed model yields a Silhouette index of 0.72306 compared to 0.3481 for the existing model, and a Davies-Bouldin index of 0.3389 compared to 1.209. Models such as Random Forest Classifier and Gradient Boosting Classifier, evaluated using the clusterizer, exhibit higher accuracy, specifically 0.87 and 0.87, respectively, compared to existing models with 0.48 and 0.49, respectively.

The distinctive feature of the clusterizer is the use of more accurate input assessments, determined by the principle of interaction and linear scaling. The proposed algorithm involves using a modified chi-square distance metric, which includes assessments of state security indices. A notable feature of the proposed approach is the more accurate determination of cluster centers using Kohonen self-organizing maps. This helps solve the task of analyzing and improving the accuracy of predicting air threat levels. The results are explained by the use of more accurate input assessments and a well-chosen distance metric between clusters in combination with Kohonen self-organizing maps.

In practice, the results could be used for analyzing air danger levels by a ground-based platform

Author Biographies

Oleksandr Laktionov, National University "Yuri Kondratyuk Poltava Polytechnic"

PhD

Department of Automation, Electronics and Telecommunications

Alina Yanko, National University "Yuri Kondratyuk Poltava Polytechnic"

PhD, Associate Professor

Department of Computer and Information Technologies and Systems

Nazar Pedchenko, National University "Yuri Kondratyuk Poltava Polytechnic"

PhD

Department of Oil and Gas Engineering and Technology

References

  1. O’Shaughnessy, D. (2024). Trends and developments in automatic speech recognition research. Computer Speech & Language, 83, 101538. https://doi.org/10.1016/j.csl.2023.101538
  2. Seo, D., Kim, S., Oh, S., Kim, S.-H. (2022). K-Means Clustering-Based Safety System in Large-Scale Industrial Site Using Industrial Wireless Sensor Networks. Sensors, 22 (8), 2897. https://doi.org/10.3390/s22082897
  3. Leal Piedrahita, E. A. (2019). Hierarchical Clustering for Anomalous Traffic Conditions Detection in Power Substations. Ciencia e Ingeniería Neogranadina, 30 (1), 75–88. https://doi.org/10.18359/rcin.4236
  4. Yanko, A., Koshman, S., Krasnobayev, V. (2017). Algorithms of data processing in the residual classes system. 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), 117–121. https://doi.org/10.1109/infocommst.2017.8246363
  5. Onyshchenko, S., Haitan, O., Yanko A., Zdorenko, Y., Rudenko, O. (2024). Method for detection of the modified DDoS cyber attacks on a web resource of an Information and Telecommunication Network based on the use of intelligent systems. Proceedings of the Modern Data Science Technologies Workshop (MoDaST 2024), 219–235. Available at: https://ceur-ws.org/Vol-3723/paper12.pdf
  6. Krasnobayev, V., Yanko, A., Hlushko, A. (2023). Information Security of the National Economy Based on an Effective Data Control Method. Journal of International Commerce, Economics and Policy, 14 (03). https://doi.org/10.1142/s1793993323500217
  7. Zdorenko, Y., Lavrut, O., Lavrut, T., Nastishin, Y. (2020). Method of Power Adaptation for Signals Emitted in a Wireless Network in Terms of Neuro-Fuzzy System. Wireless Personal Communications, 115 (1), 597–609. https://doi.org/10.1007/s11277-020-07588-5
  8. Fachrizal, F., Zarlis, M., Sihombing, P., Suherman, S. (2024). Optimization of the LEACH algorithm in the selection of cluster heads based on residual energy in wireless sensor networks. Eastern-European Journal of Enterprise Technologies, 1 (9 (127)), 14–21. https://doi.org/10.15587/1729-4061.2024.298268
  9. Szalontai, B., Debreczeny, M., Fintor, K., Bagyinka, Cs. (2020). SVD-clustering, a general image-analyzing method explained and demonstrated on model and Raman micro-spectroscopic maps. Scientific Reports, 10 (1). https://doi.org/10.1038/s41598-020-61206-9
  10. Creţulescu, R. G., Morariu, D. I., Breazu, M., Volovici, D. (2019). DBSCAN Algorithm for Document Clustering. International Journal of Advanced Statistics and IT&C for Economics and Life Sciences, 9 (1), 58–66. https://doi.org/10.2478/ijasitels-2019-0007
  11. Gan, H., Yang, Z., Zhou, R. (2023). Adaptive safety-aware semi-supervised clustering. Expert Systems with Applications, 212, 118751. https://doi.org/10.1016/j.eswa.2022.118751
  12. Powell, B. A. (2022). Role-based lateral movement detection with unsupervised learning. Intelligent Systems with Applications, 16, 200106. https://doi.org/10.1016/j.iswa.2022.200106
  13. Pérez-Ortega, J., Nely Almanza-Ortega, N., Vega-Villalobos, A., Pazos-Rangel, R., Zavala-Díaz, C., Martínez-Rebollar, A. (2020). The K-Means Algorithm Evolution. Introduction to Data Science and Machine Learning. https://doi.org/10.5772/intechopen.85447
  14. Zhao, Y., Zhou, X. (2021). K-means Clustering Algorithm and Its Improvement Research. Journal of Physics: Conference Series, 1873 (1), 012074. https://doi.org/10.1088/1742-6596/1873/1/012074
  15. Zhao, H. (2022). Design and Implementation of an Improved K-Means Clustering Algorithm. Mobile Information Systems, 2022, 1–10. https://doi.org/10.1155/2022/6041484
  16. Wiharto, W., Suryani, E. (2020). The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels. Acta Informatica Medica, 28 (1), 42. https://doi.org/10.5455/aim.2020.28.42-47
  17. Mohassel, P., Rosulek, M., Trieu, N. (2020). Practical Privacy-Preserving K-means Clustering. Proceedings on Privacy Enhancing Technologies, 2020 (4), 414–433. https://doi.org/10.2478/popets-2020-0080
  18. Hu, H., Liu, J., Zhang, X., Fang, M. (2023). An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis. Pattern Recognition, 139, 109404. https://doi.org/10.1016/j.patcog.2023.109404
  19. Chen, Y. T., Witten, D. M. (2023). Selective inference for k-means clustering. Journal of Machine Learning Research, 24 (152), 1–41. Available at: https://jmlr.org/papers/v24/22-0371.html
  20. Mortensen, K. O., Zardbani, F., Haque, M. A., Agustsson, S. Y., Mottin, D., Hofmann, P., Karras, P. (2023). Marigold: Efficientk-Means Clustering in High Dimensions. Proceedings of the VLDB Endowment, 16 (7), 1740–1748. https://doi.org/10.14778/3587136.3587147
  21. Hu, H., Li, Z., Li, X., Yu, M., Pan, X. (2021). ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means. Briefings in Bioinformatics, 23 (1). https://doi.org/10.1093/bib/bbab321
  22. Somu, N., Raman M R, G., Ramamritham, K. (2021). A deep learning framework for building energy consumption forecast. Renewable and Sustainable Energy Reviews, 137, 110591. https://doi.org/10.1016/j.rser.2020.110591
  23. Bisen, D., Lilhore, U. K., Manoharan, P., Dahan, F., Mzoughi, O., Hajjej, F. et al. (2023). A Hybrid Deep Learning Model Using CNN and K-Mean Clustering for Energy Efficient Modelling in Mobile EdgeIoT. Electronics, 12 (6), 1384. https://doi.org/10.3390/electronics12061384
  24. Kondruk, N. (2017). Clustering method based on fuzzy binary relation. Eastern-European Journal of Enterprise Technologies, 2 (4 (86)), 10–16. https://doi.org/10.15587/1729-4061.2017.94961
  25. Mohammed, A. S., Balaji, B. S., Basha M. S., S. (2019). Fuzzy applied energy aware clustering based routing for iot networks. Advanced Information Systems, 3 (4), 140–145. https://doi.org/10.20998/2522-9052.2019.4.22
  26. Krepych, S., Spivak, I. (2021). Improvement of svd algorithm to increase the efficiency of recommendation systems. Advanced Information Systems, 5 (4), 55–59. https://doi.org/10.20998/2522-9052.2021.4.08
  27. Khoroshun, G., Ryazantsev, O., Cherpitskyi, M. (2023). Clustering and anomalies of USA stock market volatility index data. Advanced Information Systems, 7 (2), 9–15. https://doi.org/10.20998/2522-9052.2023.2.02
  28. Shefer, O., Laktionov, O., Pents, V., Hlushko, A., Kuchuk, N. (2024). Practical principles of integrating artificial intelligence into the technology of regional security predicting. Advanced Information Systems, 8 (1), 86–93. https://doi.org/10.20998/2522-9052.2024.1.11
  29. davies_bouldin_score. Scikit-learn. Available at: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html
  30. silhouette_score. Scikit-learn. Available at: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
  31. Laktionov, A. (2019). Application of index estimates for improving accuracy during selection of machine operators. Eastern-European Journal of Enterprise Technologies, 3 (1 (99)), 18–26. https://doi.org/10.15587/1729-4061.2019.165884
  32. García-Tejedor, Á. J., Nogales, A. (2022). An open-source Python library for self-organizing-maps. Software Impacts, 12, 100280. https://doi.org/10.1016/j.simpa.2022.100280
Identification of air targets using a hybrid clustering algorithm

Downloads

Published

2024-10-31

How to Cite

Laktionov, O., Yanko, A., & Pedchenko, N. (2024). Identification of air targets using a hybrid clustering algorithm. Eastern-European Journal of Enterprise Technologies, 5(4 (131), 89–95. https://doi.org/10.15587/1729-4061.2024.314289

Issue

Section

Mathematics and Cybernetics - applied aspects