Design of an intelligent system for enhancing urban social resilience

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.317717

Keywords:

intelligent systems, modeling, smart cities, socio-economic analysis, machine learning

Abstract

This paper considers a comprehensive approach to the use of intelligent systems in the context of smart cities, which is aimed at increasing their social sustainability under the conditions of growing urbanization and globalization.

Cities face challenges related to the need to optimize the management of urban resources and improve the quality of life of residents, which requires innovative approaches to planning and the use of advanced technologies.

The proposed intelligent system architecture, integrating six modules such as quality of life modeling, socio-economic analysis, intelligent tourism, environmental monitoring, legal interpretation, and misinformation detection, has demonstrated a 25–40 % performance improvement depending on the module.

The effectiveness of the proposed system is explained by the use of advanced algorithms of machine learning and data analysis, which makes it possible to reduce the time of solving critical tasks and increase the adaptability of the city infrastructure to future challenges.

Owing to the integration of intelligent systems into city management, cities gain the ability to respond more effectively to current and projected social and environmental challenges, significantly improving the quality of life and environmental sustainability.

The proposed system could be implemented in cities of different sizes and configurations, contributing to long-term socio-economic development and environmental sustainability. Effective implementation of the system reduces city management costs by up to 30 %, while reducing CO2 emissions by 10–15 %, which is important in the context of combating climate change

Author Biographies

Khrystyna Lipianina-Honcharenko, West Ukrainian National University

PhD, Associate Professor

Department of Information and Computing Systems and Control

Myroslav Komar, West Ukrainian National University

Doctor of Technical Sciences, Professor

Department of Information and Computing Systems and Control

References

  1. Khatibi, H., Wilkinson, S., Baghersad, M., Dianat, H., Ramli, H., Suhatril, M. et al. (2021). The resilient – smart city development: a literature review and novel frameworks exploration. Built Environment Project and Asset Management, 11 (4), 493–510. https://doi.org/10.1108/bepam-03-2020-0049
  2. Dey, P. K., Chowdhury, S., Abadie, A., Vann Yaroson, E., Sarkar, S. (2023). Artificial intelligence-driven supply chain resilience in Vietnamese manufacturing small- and medium-sized enterprises. International Journal of Production Research, 62 (15), 5417–5456. https://doi.org/10.1080/00207543.2023.2179859
  3. Zhu, S., Li, D., Feng, H., Gu, T., Hewage, K., Sadiq, R. (2020). Smart city and resilient city: Differences and connections. WIREs Data Mining and Knowledge Discovery, 10 (6). https://doi.org/10.1002/widm.1388
  4. Arafah, Y., Winarso, H., Suroso, D. S. A. (2018). Towards Smart and Resilient City: A Conceptual Model. IOP Conference Series: Earth and Environmental Science, 158, 012045. https://doi.org/10.1088/1755-1315/158/1/012045
  5. Xiong, K., Sharifi, A., He, B.-J. (2022). Resilient-Smart Cities: Theoretical Insights. Resilient Smart Cities, 93–118. https://doi.org/10.1007/978-3-030-95037-8_5
  6. Apostu, S. A., Vasile, V., Vasile, R., Rosak-Szyrocka, J. (2022). Do Smart Cities Represent the Key to Urban Resilience? Rethinking Urban Resilience. International Journal of Environmental Research and Public Health, 19 (22), 15410. https://doi.org/10.3390/ijerph192215410
  7. Sharifi, A., Khavarian-Garmsir, A. R., Kummitha, R. K. R. (2021). Contributions of Smart City Solutions and Technologies to Resilience against the COVID-19 Pandemic: A Literature Review. Sustainability, 13 (14), 8018. https://doi.org/10.3390/su13148018
  8. Balakrishnan, S., Elayan, S., Sykora, M., Solter, M., Feick, R., Hewitt, C. et al. (2023). Sustainable Smart Cities – Social Media Platforms and Their Role in Community Neighborhood Resilience – A Systematic Review. International Journal of Environmental Research and Public Health, 20 (18), 6720. https://doi.org/10.3390/ijerph20186720
  9. Megahed, N. A., Abdel-Kader, R. F. (2022). Smart Cities after COVID-19: Building a conceptual framework through a multidisciplinary perspective. Scientific African, 17, e01374. https://doi.org/10.1016/j.sciaf.2022.e01374
  10. Petchamé, J., Iriondo, I., Korres, O., Paños-Castro, J. (2023). Digital transformation in higher education: A qualitative evaluative study of a hybrid virtual format using a smart classroom system. Heliyon, 9 (6), e16675. https://doi.org/10.1016/j.heliyon.2023.e16675
  11. Rani, S., Kataria, A., Kumar, S., Tiwari, P. (2023). Federated learning for secure IoMT-applications in smart healthcare systems: A comprehensive review. Knowledge-Based Systems, 274, 110658. https://doi.org/10.1016/j.knosys.2023.110658
  12. Molnar, A. (2021). Smart cities education: An insight into existing drawbacks. Telematics and Informatics, 57, 101509. https://doi.org/10.1016/j.tele.2020.101509
  13. Dai, Z., Xiong, J., Zhao, L., Zhu, X. (2023). Smart classroom learning environment preferences of higher education teachers and students in China: An ecological perspective. Heliyon, 9 (6), e16769. https://doi.org/10.1016/j.heliyon.2023.e16769
  14. Gong, Z., Ji, J., Tong, P., Metwally, A. S. M., Dutta, A. K., Rodrigues, J. J. P. C., Mohamad, U. H. (2023). Smart urban planning: Intelligent cognitive analysis of healthcare data in cloud-based IoT. Computers and Electrical Engineering, 110, 108878. https://doi.org/10.1016/j.compeleceng.2023.108878
  15. Corsi, A., Florencio de Souza, F., Pagani, R. N., Kovaleski, J. L. (2022). Ultimate approach and technologies in smart healthcare: A broad systematic review focused on citizens. Smart Health, 26, 100310. https://doi.org/10.1016/j.smhl.2022.100310
  16. Garcia-Retuerta, D., Chamoso, P., Hernández, G., Guzmán, A. S. R., Yigitcanlar, T., Corchado, J. M. (2021). An Efficient Management Platform for Developing Smart Cities: Solution for Real-Time and Future Crowd Detection. Electronics, 10 (7), 765. https://doi.org/10.3390/electronics10070765
  17. Kaluarachchi, Y. (2022). Implementing Data-Driven Smart City Applications for Future Cities. Smart Cities, 5 (2), 455–474. https://doi.org/10.3390/smartcities5020025
  18. Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J. M. (2018). Tendencies of Technologies and Platforms in Smart Cities: A State‐of‐the‐Art Review. Wireless Communications and Mobile Computing, 2018 (1). https://doi.org/10.1155/2018/3086854
  19. Qi, L., Guo, J. (2019). Development of smart city community service integrated management platform. International Journal of Distributed Sensor Networks, 15 (6), 155014771985197. https://doi.org/10.1177/1550147719851975
  20. Samih, H. (2019). Smart cities and internet of things. Journal of Information Technology Case and Application Research, 21 (1), 3–12. https://doi.org/10.1080/15228053.2019.1587572
  21. Sarker, I. H. (2022). Smart City Data Science: Towards data-driven smart cities with open research issues. Internet of Things, 19, 100528. https://doi.org/10.1016/j.iot.2022.100528
  22. Ismagilova, E., Hughes, L., Dwivedi, Y. K., Raman, K. R. (2019). Smart cities: Advances in research – An information systems perspective. International Journal of Information Management, 47, 88–100. https://doi.org/10.1016/j.ijinfomgt.2019.01.004
  23. Chamoso, P., González-Briones, A., De La Prieta, F., Venyagamoorthy, G. K., Corchado, J. M. (2020). Smart city as a distributed platform: Toward a system for citizen-oriented management. Computer Communications, 152, 323–332. https://doi.org/10.1016/j.comcom.2020.01.059
  24. Huang, Y., Peng, H., Sofi, M., Zhou, Z., Xing, T., Ma, G., Zhong, A. (2022). The city management based on smart information system using digital technologies in China. IET Smart Cities, 4 (3), 160–174. https://doi.org/10.1049/smc2.12035
  25. Lipianina-Honcharenko, K., Wolff, C., Chyzhovska, Z., Sachenko, A., Lendiuk, T., Grodskyi, S. (2022). Intelligent Method for Forming the Consumer Basket. Information and Software Technologies, 221–231. https://doi.org/10.1007/978-3-031-16302-9_17
  26. Krylov, V., Sachenko, A., Strubytskyi, P., Lendiuk, D., Lipyanina, H., Zahorodnia, D. et al. (2019). Multiple Regression Method for Analyzing the Tourist Demand Considering the Influence Factors. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 974–979. https://doi.org/10.1109/idaacs.2019.8924461
  27. Lipianina-Honcharenko, K., Savchyshyn, R., Sachenko, A., Chaban, A., Kit, I., Lendiuk, T. (2022). Concept of the Intelligent Guide with AR Support. International Journal of Computing, 271–277. https://doi.org/10.47839/ijc.21.2.2596
  28. Lipianina-Honcharenko, K., Sachenko, A., Kulyk, V., Savchyshyn, R., Provozin, O., Shchur, S., Kurpita, L. (2022). Simulation model structure of business processes for a product based on auralization technology. Computer Systems and Information Technologies, 4, 114–120. https://doi.org/10.31891/csit-2022-4-15
  29. Pisnyi, O., Kit, I., Lipianina-Honcharenko, K., Sieck, J., Sachenko, A., Dobrowolski, M., Sapozhnyk, G. (2023). AR Intelligent Real-time Method for Cultural Heritage Object Recognition. 2023 IEEE 5th International Conference on Advanced Information and Communication Technologies (AICT), 62–66. https://doi.org/10.1109/aict61584.2023.10452426
  30. Komar, M., Savchyshyn, R., Lipianina-Honcharenko, K., Osolinskyi, O. (2023). Intelligent method for counting cars from satellite images. Selected Papers of the III International Scientific Symposium “Intelligent Solutions” (IntSol-2023). Symposium Proceedings. Kyiv – Uzhhorod, 295–303. Available at: https://ceur-ws.org/Vol-3538/Short_1.pdf
  31. Lipianina-Honcharenko, K., Wolff, C., Sachenko, A., Kit, I., Zahorodnia, D. (2023). Intelligent Method for Classifying the Level of Anthropogenic Disasters. Big Data and Cognitive Computing, 7 (3), 157. https://doi.org/10.3390/bdcc7030157
  32. Schauer, S., Sieck, J., Lipianina-Honcharenko, K., Sachenko, A., Kit, I. (2023). Use of Digital Auralised 3D Models of Cultural Heritage Sites for Long-term Preservation. 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 708–712. https://doi.org/10.1109/idaacs58523.2023.10348637
  33. Lipianina-Honcharenko, K., Komar, M., Osolinskyi, O., Shymanskyi, V., Havryliuk, M., Semaniuk, V. (2023). Intelligent Waste-Volume Management Method in the Smart City Concept. Smart Cities, 7 (1), 78–98. https://doi.org/10.3390/smartcities7010004
Design of an intelligent system for enhancing urban social resilience

Downloads

Published

2024-12-27

How to Cite

Lipianina-Honcharenko, K., Komar, M., Madarash, R., Novosad, S., Zhabiuk, V., Mykhalchuk, N., Koshytskii, K., Lendiuk, D., Melnyk, N., & Telikhovskyi, O. (2024). Design of an intelligent system for enhancing urban social resilience. Eastern-European Journal of Enterprise Technologies, 6(13 (132), 48–63. https://doi.org/10.15587/1729-4061.2024.317717

Issue

Section

Transfer of technologies: industry, energy, nanotechnology