Determining the effect of reinforcing asphalt-concrete coating with synthetic nets on its performance indicators

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.320426

Keywords:

asphalt, synthetic grids, reinforcement, rutting, adhesion between asphalt concrete layers

Abstract

The object of this study is an asphalt concrete cover, the upper layer of which is reinforced with the synthetic material GlasGrid. The subject of research is the performance indicators of asphalt concrete coating.

Experimental studies on the effect of reinforced asphalt concrete with synthetic nets on the evolution of rutting and bond strength between layers have been conducted.

It has been established that reinforcing the asphalt concrete coating with synthetic nets reduces rutting. At 10,000 load cycles and a temperature of 50 °C, the average value of the rut depth in slab samples without a reinforcing joint was 3.8 mm, and at a temperature of 60 °C – 3.7 mm. In the case of reinforcing the upper layer with a GlasGrid®GG100 net, the depth of the rut at an operating temperature of 50 °C was 3.3, and at an operating temperature of 60 °C – 2.6 mm. With a total number of 20,000 load cycles, the average value of the rut depth without reinforcement of the slab sample is 7.5 mm, and with reinforcement – 5.9 mm.

It was established that the rutting resistance of slab samples with reinforcing synthetic nets, in comparison with slab samples without reinforcing material, after the first stage of testing was 13.2 % and 29.7 % after the second stage of testing.

It has been established that the maximum vertical shear force that occurs during the destruction of asphalt concrete layers without reinforcement is higher than asphalt concrete layers reinforced with a synthetic mesh. The values of the vertical shear forces without reinforcing the samples are 21.63 kN and 18.46 kN when the samples are reinforced with a synthetic mesh. At the same time, the maximum shear stresses between layers of asphalt concrete core samples without reinforcement are 1.169 MPa, and with reinforcement – 0.988 MPa.

Reinforcing the upper layer of the asphalt concrete coating with synthetic meshes will lead to an increase in the durability of the asphalt concrete coating along road sections

Author Biographies

Artur Onyshchenko, National Transport University

Doctor of Technical Sciences, Professor

Department of Bridges and Tunnels and Hydrotechnical Structures

Vitalii Kovalchuk, Lviv Polytechnic National University

Doctor of Technical Sciences, Professor

Department of Railway Transport

Dmytro Husev, Caponier-Group LLC

Director

Dmitry Anishchenko, Municipal Corporation “Kyivavtodor”

Deputy General Director for Financial and Economic Issues

Maksym Tymoshyn, SE “Dorcenter”

Head of Laboratory

Laboratory for Testing Road Construction Materials

Oleg Tsekhansky, Caponier-Group LLC

Head of Direction

Andrii Rubliov, National Transport University

PhD, Associate Professor

Department of Bridges and Tunnels and Hydrotechnical Structures

Ihor Mel'nyk, Lviv Polytechnic National University

Doctor of Technical Sciences, Associate Professor

Department of Highways and Bridges

References

  1. Onyshchenko, A. M., Mozghovyi, V. V., Harkusha, M. V., Aksonov, S. Yu. (2012). Suchasni aspekty pidvyshchennia koliestiykosti nezhorstkoho dorozhnoho odiahu. Avtoshliakhovyk Ukrainy, 5, 25–30. Available at: http://nbuv.gov.ua/UJRN/au_2012_5_8
  2. Hameliak, I. P., Raikovskyi, V. F. (2014). Analiz transportno-ekspluatatsiynykh pokaznykiv stanu avtomobilnykh dorih derzhavnoho znachennia. Avtoshliakhovyk Ukrainy, 1, 24–28. Available at: http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/au_2014_1_7.pdf
  3. Gulyayev, V. I., Mozgovyy, V. V., Gustieliev, O. O., Shlyun, N. V., Kutsman, O. M., Baran, S. A. (2019). Analysis of stress-strain state of a road overlay reinforced by support under transverse cracks and SEAMs. The National Transport University Bulletin, 1 (43), 26–38. https://doi.org/10.33744/2308-6645-2019-1-43-026-038
  4. Onyshchenko, A. M. (2017). Proektuvannia zernovoho skladu asfaltobetonu pidvyshchenoi koliestiykosti z optymizatsieiu za pokaznykom rozrakhunkovoho stroku sluzhby. International scientific and practical conference "WORLD SCIENCE", 2 (4 (20)), 32–35. Available at: https://journals.indexcopernicus.com/api/file/viewByFileId/424118
  5. Shevchuk, L. V., Vashchilina, O. V., Lebedyeva, I. V., Baran, S. A. (2018). Finite element monitoring of straineddeformed road surface with bundle. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics, 2, 57–60. Available at: http://nbuv.gov.ua/UJRN/VKNU_fiz_mat_2018_2_9
  6. Mozghovyi, V. V., Kutsman, O. M., Baran, S. A., Borovyk, I. I. (2016). The assessment of durability of asphalt pavement asphalt through the test for resistance to permanent deformation accumulation. Visnyk Natsionalnoho transportnoho universytetu, 1 (34), 283–293. Available at: http://nbuv.gov.ua/UJRN/Vntu_2016_1_36
  7. Armuiuchi heohratky dlia asfaltobetonu GlaGrid®. Available at: https://www.viaduk.net/clients/caponier.nsf/0/2b53f3260fafa98bc22586f8002cd3aa/$FILE/minicatalogue_UKR_2020.10_v6.pdf
  8. Vasileva, H., Koshevyi, O., Mishchenko, O., Cherednichenko, P. (2020). Thermoelastic state of multilayered road pavement. Urban Development and Spatial Planning, 73, 29–40. https://doi.org/10.32347/2076-815x.2020.73.29-40
  9. Gaidaichuk, V., Gustieliev, O., Radkevich, A., Shevchuk, L., Shlyun, N. (2019). Thermal elastic deformation of the layered covering on the concave part of a road. Strength of Materials and Theory of Structures, 102, 180–190. https://doi.org/10.32347/2410-2547.2019.102.180-190
  10. Onyshchenko, A. M., Harkusha, M. V., Aksonov, S. Yu., Bilan, O. O. (2013). Eksperymentalnyi analiz vplyvu mikrovolokon na pidvyshchennia trishchynostiykosti ta koliestiykosti asfaltobetonnoho pokryttia vyprobuvanoho na kiltsevomu stendi. Avtomobilni dorohy i dorozhnie budivnytstvo, 88, 89–100. Available at: http://nbuv.gov.ua/UJRN/adidb_2013_88_13
  11. Kushnir, O. V., Gamelyak, I. P., Raikovsky, V. F., Klimov, U. M. (2020). Designing of a design of road clothes for transportation of large and especially heavy loads by roads of Ukraine. Science and Education a New Dimension, VIII (30), 53–62. https://doi.org/10.31174/send-nt2020-244viii30-13
  12. Dorozhko, Y., Batrakova, A., Tymoshevskyi, V., Zakharova, E. (2021). Ensuring adhesion between the asphalt-concrete road surface and rigid base at the roadbed design stage. Eastern-European Journal of Enterprise Technologies, 3 (7 (111)), 84–92. https://doi.org/10.15587/1729-4061.2021.235394
  13. Onyshchenko, A. M. (2016). Method of Calculating Strength Grip Coating of Asphalt Roadway Bridge at Shift from Emergency Braking of Vehicle. Visnyk Vinnytskoho politekhnichnoho instytutu, 4, 12–19. Available at: https://ir.lib.vntu.edu.ua/handle/123456789/21577?show=full
  14. Onyshchenko, A., Kovalchuk, V., Zagorodniy, O., Moroz, V. (2023). Determining the residual service life of polymer-modified asphalt concrete pavement on road bridges. Eastern-European Journal of Enterprise Technologies, 3 (1 (123)), 41–51. https://doi.org/10.15587/1729-4061.2023.279006
  15. Kovalchuk, V., Sobolevska, Y., Onyshchenko, A., Fedorenko, O., Tokin, O., Pavliv, A. et al. (2021). Procedure for determining the thermoelastic state of a reinforced concrete bridge beam strengthened with methyl methacrylate. Eastern-European Journal of Enterprise Technologies, 4 (7 (112)), 26–33. https://doi.org/10.15587/1729-4061.2021.238440
  16. Al-Hadidy, A. I. (2023). Experimental Investigation on Performance of Asphalt Mixtures with Waste Materials. International Journal of Pavement Research and Technology, 17 (4), 1079–1091. https://doi.org/10.1007/s42947-023-00288-w
  17. Zhou, F., Li, H., Chen, P., Scullion, T. (2014). Research Report FHWA/TX-14/0-6674-1: Laboratory Evaluation of Asphalt Binder Rutting, Fracture, and Adhesion tests. Texas Department of Transportation, Austin. Available at: https://rosap.ntl.bts.gov/view/dot/27289
  18. Kim, Y. R., Lee, S., Seo, Y., El-Haggan, O. (2005). Impact of Price Reductions on the Long-Tern Pavement Performance of HMA Mixes in North Carolina. Available at: https://trid.trb.org/View/803337
  19. GLASGRID® GG. Available at: https://asphaltgroup.co.uk/glasgrid-gg
  20. Asphalt Reinforcement. Available at: https://eu.adfors.com/asphalt-reinforcement
  21. Investigations into the performance of asphalt inlays (2015). Test Report No. 1408005. Asphalta Prüf- und Forschungslaboratorium GmbH.
  22. DIN 1996-7:1992-12. Testing of asphalt; determination of bulk density, compacted density, void content and degree of compaction. Available at: https://www.dinmedia.de/en/standard/din-1996-7/1991339
Determining the effect of reinforcing asphalt-concrete coating with synthetic nets on its performance indicators

Downloads

Published

2025-02-05

How to Cite

Onyshchenko, A., Kovalchuk, V., Husev, D., Anishchenko, D., Tymoshyn, M., Tsekhansky, O., Rubliov, A., & Mel’nyk, I. (2025). Determining the effect of reinforcing asphalt-concrete coating with synthetic nets on its performance indicators. Eastern-European Journal of Enterprise Technologies, 1(1 (133), 73–81. https://doi.org/10.15587/1729-4061.2025.320426

Issue

Section

Engineering technological systems