Spectral decomposition for some transport operator

Authors

  • Halyna Volodymyrivna Ivasyk National University "Lviv Polytechnic"' 12, S.Bandery str, Lviv, Ukraine, 79013, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2012.3328

Keywords:

Transport operator, analytic extension, Friedrich's model

Abstract

Transport operator gives Friedrich's model with the help of Fourier  transformation. Using  known formulae of jump of the resolvent for the operators of  Friedrich's model we obtain Parseval equality with the help of method of contour integrating

Author Biography

Halyna Volodymyrivna Ivasyk, National University "Lviv Polytechnic"' 12, S.Bandery str, Lviv, Ukraine, 79013

Asystent of department of high mathematics

References

  1. Lehner I. The spectrum of neutron transport operator for the infinit slab// I.Math. Mech. 11(1962), n.2, 173-181.
  2. Kuperin Yu.A., Naboko S.N., Romanov R.V. Spectral analysis of a one speed transmission operator and functional model, Funct. anal. and its appl. (1999), v.33, n.2, 47-58 (Russian).
  3. Diaba F. Cheremnikh E.V. On the point spectrum of transport operator, Math. Func, Anal. and Topology, v.11, n.1, 2005, 21-36.
  4. Ivasyk G.V., Cheremnikh E.V. Friedrich's model for transport operator, Journal of National University "`Lvivska Politechnika"', Phys. and math. sciences, v.643, n.643, 2009, 30-36 (Ukrainian).
  5. Cheremnikh E.V., Diaba F., Ivasyk G.V., On the asymptotic of the solutions of transport evolution equation, Математичне та компютерне моделювання, Фізико-математичні науки, v.4,, 2010, 208-223, (English).
  6. Черемных Е. В., A remark about calculation of the jump of the resolvent in Friedrich's model. (in print)
  7. Ивасык Г. В., Черемных Е. В., On continuous spectrum of transport operator, Таврический Вестник Информатики и Математики,http://tvim.info/node/538, 2, 2010, 71- (english).

Published

2012-02-01

How to Cite

Ivasyk, H. V. (2012). Spectral decomposition for some transport operator. Eastern-European Journal of Enterprise Technologies, 1(4(55), 10–13. https://doi.org/10.15587/1729-4061.2012.3328

Issue

Section

Mathematics and Cybernetics - applied aspects