Study of porous silicon surface by mass spectroscopy methods

Authors

  • Микола Миколайович Берченко Centre of Microelectronics and Nanotechnology of Rzeszów University ul. Pigonia 1, 35-959 Rzeszów, Poland, Poland
  • Валерій Юрійович Єрохов Lviv Polytechnic National University Bandera Str., 12, Lviv, Ukraine, 79013, Ukraine
  • Степан Ігорович Нічкало Lviv Polytechnic National University S. Bandera Str., 12, Lviv, Ukraine, 79013, Ukraine
  • Євген Іванович Бережанський Lviv Polytechnic National University S. Bandera Str., 12, Lviv, Ukraine, 79013, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.33550

Keywords:

porous silicon, electrochemical hydrogenation, multicrystalline substrate, mass spectrometry, photovoltaic cell

Abstract

Silicon surfaces of multicrystalline substrates before and after the formation of porous silicon on them, used in the production of photovoltaic cells were studied by mass spectrometry methods. An analysis of the elemental surface composition by mass spectroscopy of secondary ions at various manufacturing stages, including before and after electrochemical etching to create a porous silicon layer was conducted in the research. Clean surfaces before etching in an electrolyte based on hydrofluoric acid (HF: C2H5OH=10:1) were compared with surfaces after the etching process, both at secondary ion spectra, and in 2D-ion images of the multicrystalline substrate surface that have been obtained on the mass-spectrometer TOF5 SIMS using a current of secondary ions CH3+. In particular,  the presence of ion CH3+, which can saturate the dangling bonds of the porous silicon surface, obtained due to the electrochemical technology using etchant solutions based on hydrofluoric acid with the addition of ((CH3)2NCOH) was checked. As can be seen from the above mass spectroscopy spectra, both oxygen complexes and hydrogen bonds are present on a clean silicon surface before etching. As shown in the 2D-ion image of the sample surface, the surface of the etched silicon contains a large number of secondary ions CH3+. This is also evident from the spectra of secondary ion emission of the silicon surface before and after etching.

Author Biographies

Микола Миколайович Берченко, Centre of Microelectronics and Nanotechnology of Rzeszów University ul. Pigonia 1, 35-959 Rzeszów, Poland

Professor

Валерій Юрійович Єрохов, Lviv Polytechnic National University Bandera Str., 12, Lviv, Ukraine, 79013

Doctor of technical sciences, Associate Professor

Department of Semiconductor Electronics 

Степан Ігорович Нічкало, Lviv Polytechnic National University S. Bandera Str., 12, Lviv, Ukraine, 79013

PhD

Department of Semiconductor Electronics

Євген Іванович Бережанський, Lviv Polytechnic National University S. Bandera Str., 12, Lviv, Ukraine, 79013

Postgraduate student

Department of Semiconductor Electronics

References

  1. Bilyalov, R. R., Lüdemann, R., Wettling, W., Stalmans, L., Poortmans, J., Nijs, J. et. al. (2000). Multicrystalline silicon solar cells with porous silicon emitter. Solar Energy Materials and Solar Cells, 60 (4), 391–420. doi: 10.1016/s0927-0248(99)00102-6
  2. Huang, Y. M., Ma, Q.-L., Meng, M. (2011). Porous silicon based solar cells, Materials Science Forum, 663-665, 836–839. doi: 10.4028/www.scientific.net/msf.663-665.836
  3. Jinsu, Y., Gwonjong, Y., Junsin, Y. (2009). Black surface structures for crystalline silicon solar cells. Materials Science and Engineering, B, 159-160, 333–337. doi: 10.1016/j.mseb.2008.10.019
  4. Fang, W., Changshui, C., Huili, H. (2011). Analysis of sunlight loss for femtosecond laser microstructed silicon and its solar cell efficiency, Applied Physics A, 103 (4), 977–982. doi: 10.1007/s00339-010-6095-0
  5. Foil, Н., Christophersen, М., Carstensen, J.,. Hasse, G. (2002). Formation and application of porous silicon, Materials Science and Engineering R, 39, 93–141.
  6. Yerokhov, V. Yu., Melnyk, I. I., Gasko, L. Z., Iznin, O. I. (1998). Porous silicon hydrogenizing for solar cells”, In Proc. of First World Conference "Porous Semiconductors: Science and Technology”. Mallorca, Spain, 169.
  7. Yerokhov, V. Yu, Melnyk, I. I., Bogdanovsky, N., Iznin, O. I. (1998). Hydrogenated porous silicon in solar cells structure, In Proc. of 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, Austria, 1256–1259.
  8. Bertoni, M. I., Udelson, S., Newman, B. K., Bernardis, S. et. al. (2010). Impact of defect type on hydrogen passivation effectiveness in multicrystalline silicon solar cells, In Proc. of the 35th IEEE Photovoltaic Specialists Conference, 345. doi: 10.1109/pvsc.2010.5616904
  9. Druzhynin, A. O., Jerohov, V. Ju., Berchenko, N. N. (2014). Study of surface multicrystalline substrates silicon saturated aqueous by mass spectroscopy. Eastern-European Journal of Enterprise Technologies, 1/5(67), 34–37. Available at: http://journals.uran.ua/eejet/article/view/21053/18887
  10. Salman, K. A., Omar, K., Hassan, Z. (2011). The effect of etching time of porous silicon on solar cell performance. Superlattices and Microstructures, 50(6), 647–658. doi: 10.1016/j.spmi.2011.09.006
  11. Banerjee, S., Narasimhan, K. L., Sardesai, A. (1994). Role of Hydrogen- and oxygen-terminated surfaces in the luminescence of porous silicon, Physical Review B, 49 (4), 2915–2918. doi: 10.1103/physrevb.49.2915

Published

2014-12-15

How to Cite

Берченко, М. М., Єрохов, В. Ю., Нічкало, С. І., & Бережанський, Є. І. (2014). Study of porous silicon surface by mass spectroscopy methods. Eastern-European Journal of Enterprise Technologies, 6(11(72), 41–45. https://doi.org/10.15587/1729-4061.2014.33550

Issue

Section

Materials Science