Development of a polymodel complex of information systems resource management
DOI:
https://doi.org/10.15587/1729-4061.2025.335688Keywords:
artificial intelligence, destabilizing factors, operational levels, indicators, criteria, efficiency, reliabilityAbstract
The object of the study is information systems. The research addresses the problem of increasing the accuracy of modeling the functioning processes of information systems. A polymodel complex for resource management in information systems has been developed.
The originality of the research is ensured by:
– a comprehensive description of the functioning processes of various types of information systems through the development of corresponding mathematical expressions, which enhances the accuracy of modeling for subsequent managerial decision-making;
– the inclusion of both static and dynamic processes occurring within information systems, using a hierarchical system of interconnected mathematical models;
– the ability to model either an individual process within an information system or to perform integrated modeling of multiple processes using a single or a set of mathematical models;
– a dynamic description of the process of controlling the trajectory of information systems during their operation through proposed analytical expressions, enabling forecasting of the system’s behavior N steps ahead;
– modeling the process of operations management during computational tasks within the functioning of information systems, which allows for planning of optimal load distribution on the hardware components;
– simulation of the dynamics of resource management in information systems during their operation, making it possible to forecast the engagement of resources throughout their lifecycle.
The proposed polymodel complex is advisable to use for solving management tasks of information systems characterized by a high level of complexity
References
- Sova, O., Radzivilov, H., Shyshatskyi, A., Shvets, P., Tkachenko, V., Nevhad, S. et al. (2022). Development of a method to improve the reliability of assessing the condition of the monitoring object in special-purpose information systems. Eastern-European Journal of Enterprise Technologies, 2 (3 (116)), 6–14. https://doi.org/10.15587/1729-4061.2022.254122
- Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
- Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
- Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. https://doi.org/10.20998/2522-9052.2020.1.14
- Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. https://doi.org/10.20998/2522-9052.2020.2.05
- Wang, J., Neil, M., Fenton, N. (2020). A Bayesian network approach for cybersecurity risk assessment implementing and extending the FAIR model. Computers & Security, 89, 101659. https://doi.org/10.1016/j.cose.2019.101659
- Matheu-García, S. N., Hernández-Ramos, J. L., Skarmeta, A. F., Baldini, G. (2019). Risk-based automated assessment and testing for the cybersecurity certification and labelling of IoT devices. Computer Standards & Interfaces, 62, 64–83. https://doi.org/10.1016/j.csi.2018.08.003
- Henriques de Gusmão, A. P., Mendonça Silva, M., Poleto, T., Camara e Silva, L., Cabral Seixas Costa, A. P. (2018). Cybersecurity risk analysis model using fault tree analysis and fuzzy decision theory. International Journal of Information Management, 43, 248–260. https://doi.org/10.1016/j.ijinfomgt.2018.08.008
- Folorunso, O., Mustapha, O. A. (2015). A fuzzy expert system to Trust-Based Access Control in crowdsourcing environments. Applied Computing and Informatics, 11 (2), 116–129. https://doi.org/10.1016/j.aci.2014.07.001
- Mohammad, A. (2020). Development of the concept of electronic government construction in the conditions of synergetic threats. Technology Audit and Production Reserves, 3 (2 (53)), 42–46. https://doi.org/10.15587/2706-5448.2020.207066
- Bodin, L. D., Gordon, L. A., Loeb, M. P., Wang, A. (2018). Cybersecurity insurance and risk-sharing. Journal of Accounting and Public Policy, 37 (6), 527–544. https://doi.org/10.1016/j.jaccpubpol.2018.10.004
- Cormier, A., Ng, C. (2020). Integrating cybersecurity in hazard and risk analyses. Journal of Loss Prevention in the Process Industries, 64, 104044. https://doi.org/10.1016/j.jlp.2020.104044
- Hoffmann, R., Napiórkowski, J., Protasowicki, T., Stanik, J. (2020). Risk based approach in scope of cybersecurity threats and requirements. Procedia Manufacturing, 44, 655–662. https://doi.org/10.1016/j.promfg.2020.02.243
- Perrine, K. A., Levin, M. W., Yahia, C. N., Duell, M., Boyles, S. D. (2019). Implications of traffic signal cybersecurity on potential deliberate traffic disruptions. Transportation Research Part A: Policy and Practice, 120, 58–70. https://doi.org/10.1016/j.tra.2018.12.009
- Promyslov, V. G., Semenkov, K. V., Shumov, A. S. (2019). A Clustering Method of Asset Cybersecurity Classification. IFAC-PapersOnLine, 52 (13), 928–933. https://doi.org/10.1016/j.ifacol.2019.11.313
- Zarreh, A., Saygin, C., Wan, H., Lee, Y., Bracho, A. (2018). A game theory based cybersecurity assessment model for advanced manufacturing systems. Procedia Manufacturing, 26, 1255–1264. https://doi.org/10.1016/j.promfg.2018.07.162
- Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
- Levashenko, V., Liashenko, O., Kuchuk, H. (2020). Building Decision Support Systems based on Fuzzy Data. Advanced Information Systems, 4 (4), 48–56. https://doi.org/10.20998/2522-9052.2020.4.07
- Kashkevich, S. (Ed.) (2025). Decision support systems: mathematical support. Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-13-9
- Shyshatskyi, A. (Ed.) (2024). Information and control systems: modelling and optimizations. Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-04-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrii Shyshatskyi, Ganna Plekhova, Elena Odarushchenko, Hennadii Miahkykh, Olena Feoktystova, Igor Shostak, Dmytro Honcharuk, Oleksandr Lytvynenko, Anna Lyashenko, Yevhenii Kapran

This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.





