Development of image encryption method using surjective finite automata and custom S-box within the advanced encryption standard framework

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.348368

Keywords:

image encryption, surjective finite automaton, custom S-box, AES

Abstract

The object of the study is the AES-128 (Advanced Encryption Standard) – based image-encryption scheme. The problem solved is the persistence of residual image structure and sub-ideal statistical security when classical AES is naively applied to visual data. The generated cipher images yield near-maximal entropy with low pixel correlations and uniform histograms. Encrypted-image Chi-square values concentrate around 200–310 (close to a uniform distribution), the NPCR (Number Of Changing Pixel Rate) consistently 99.623–99.657% with a best case 99.6547%, and the UACI (Unified Averaged Changed Intensity) ≈ 33.64% per channel (RGB combined ≈ 22%). Robustness tests show ≈ 30.7 dB at 50% cropping and ≈ 39.5–39.7 dB at 0.01 salt-and-pepper noise and 6.25% cropping. These outcomes are explained by the bit-level, state-dependent permutations introduced by the surjective automaton (boosting diffusion) and by the nonlinear S-box synthesized under strict criteria (e. g., bounded differential uniformity, high nonlinearity) that heighten confusion, and operation in CBC (Cipher Block Chaining) mode supplies semantic security. Other unique features that facilitate the solution are the substituting of ShiftRows/MixColumns with surjective finite automata; a custom, criteria-optimized S-box; and a 10-round AES-128 CBC pipeline with a random. Taking all of this together yielding observed statistical uniformity, a high NPCR/UACI, and stable robustness under degradation. Lastly, the findings demonstrate the applicability to secure multimedia transmission and storage in channels prone to noise or partial data loss, and being data-agnostic, that the transformations can generalize to text and generic binary data when carefully managed

Author Biographies

Alibek Barlybayev, L.N. Gumilyov Eurasian National University

Doctor PhD, Professor

Department of Artificial Intelligence Technologies

Zhanat Saukhanova, L.N. Gumilyov Eurasian National University

Candidate of Physical and Mathematical Sciences, Associate Professor

Department of Information Security

Gulmira Shakhmetova, L.N. Gumilyov Eurasian National University

Senior Lecturer

Department of Information Security

Altynbek Sharipbay, L.N. Gumilyov Eurasian National University

Doctor of Technical Sciences, Professor

Department of Artificial Intelligence Technologies

Sayat Raykul, L.N. Gumilyov Eurasian National University

Student

Department of Information Security

Altay Khassenov, L.N. Gumilyov Eurasian National University

Student

Department of Information Security

References

  1. Chahar, S. (2024). Exploring the future trends of cryptography. Next Generation Mechanisms for Data Encryption, 234–257. https://doi.org/10.1201/9781003508632-16
  2. Kong, J. H., Ang, L.-M., Seng, K. P. (2015). A comprehensive survey of modern symmetric cryptographic solutions for resource constrained environments. Journal of Network and Computer Applications, 49, 15–50. https://doi.org/10.1016/j.jnca.2014.09.006
  3. Sharipbay, A., Saukhanova, Z., Shakhmetova, G., Barlybayev, A. (2023). Development of Reliable and Effective Methods of Cryptographic Protection of Information Based on the Finite Automata Theory. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 26, 19–25. https://doi.org/10.55549/epstem.1409285
  4. Shakhmetova, G., Barlybayev, A., Saukhanova, Z., Sharipbay, A., Raykul, S., Khassenov, A. (2024). Enhancing Visual Data Security: A Novel FSM-Based Image Encryption and Decryption Methodology. Applied Sciences, 14 (11), 4341. https://doi.org/10.3390/app14114341
  5. Salami, Y., Khajevand, V., Zeinali, E. (2023). Cryptographic algorithms: A review of the literature, weaknesses and open challenges. Journal of Computer & Robotics, 2 (16), 63–115. http://dx.doi.org/10.22094/JCR.2023.1983496.1298
  6. Hospodár, M., Jirásková, G. (2024). Conversions Between Six Models of Finite Automata. International Journal of Foundations of Computer Science, 36 (03), 321–344. https://doi.org/10.1142/s0129054124430020
  7. Lotfi, Z., Khalifi, H., Ouardi, F. (2023). Efficient Algebraic Method for Testing the Invertibility of Finite State Machines. Computation, 11 (7), 125. https://doi.org/10.3390/computation11070125
  8. Abubaker, S., Wu, K. (2013). DAFA - A Lightweight DES Augmented Finite Automaton Cryptosystem. Security and Privacy in Communication Networks, 1–18. https://doi.org/10.1007/978-3-642-36883-7_1
  9. Kodada, B. (2022). FSAaCIT: Finite State Automata based One-Key Cryptosystem and Chunk-based Indexing Technique for Secure Data De-duplication in Cloud Computing. https://doi.org/10.36227/techrxiv.20443653.v1
  10. Salas Pena, P. I., Ernesto Gonzalez Torres, R. (2016). Authenticated Encryption based on finite automata cryptosystems. 2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–6. https://doi.org/10.1109/iceee.2016.7751254
  11. Khatua, K., Chattopadhyay, S., Dhar, A. S. (2025). Performance evaluation for accelerated and efficient prediction of different regression models aggravated with BPSO for enhancing area efficiency through state encoding in sequential circuits. Swarm and Evolutionary Computation, 95, 101919. https://doi.org/10.1016/j.swevo.2025.101919
  12. Srilakshmi, S. (2012). On finite state machines and recursive functions application to cryptosystems. Anantapuram. Available at: https://shodhganga.inflibnet.ac.in/handle/10603/11436
  13. Meskanen, T. (2001). On finite automaton public key cryptosystems. Turku Centre for Computer Science. Available at: https://www.finna.fi/Record/utu.998871095405971
  14. Tao, R., Chen, S., Chen, X. (1997). FAPKC3: A new finite automaton public key cryptosystem. Journal of Computer Science and Technology, 12 (4), 289–305. https://doi.org/10.1007/bf02943149
  15. Tao, R., Chen, S. (1999). The generalization of public key cryptosystem FAPKC4. Chinese Science Bulletin, 44 (9), 784–790. https://doi.org/10.1007/bf02885019
  16. Kodada, B. B., D’Mello, D. A. (2021). Symmetric Key Cryptosystem based on Sequential State Machine. IOP Conference Series: Materials Science and Engineering, 1187 (1), 012026. https://doi.org/10.1088/1757-899x/1187/1/012026
  17. Seitkulov, Y., Ospanov, R., Tashatov, N., Eraliyeva, B., Sisenov, N. (2023). Software tool for analysis and synthesis of cryptographic S-boxes. KazATC Bulletin, 126 (3), 257–266. https://doi.org/10.52167/1609-1817-2023-126-3-257-266
  18. Ospanov, R., Seitkulov, Y., Eraliyeva, B. (2022). Generalized algebraic method for constructing 8-bit Rijndael S-block. KazATC Bulletin, 120 (1), 156–163. https://doi.org/10.52167/1609-1817-2022-120-1-156-163
  19. Zheng, D., Alkawaz, M. H., Johar, M. G. M. (2025). Privacy protection and data security in intelligent recommendation systems. Neural Computing and Applications, 37 (34), 28431–28448. https://doi.org/10.1007/s00521-025-11189-3
  20. Xu, X., Song, X., Liu, S., Zhou, N., Wang, M. (2025). New 2D hyperchaotic Cubic-Tent map and improved 3D Hilbert diffusion for image encryption. Applied Intelligence, 55 (7). https://doi.org/10.1007/s10489-025-06414-4
  21. Dougherty, S. T., Klobusicky, J., Şahinkaya, S., Ustun, D. (2023). An S-Box construction from exponentiation in finite fields and its application in RGB color image encryption. Multimedia Tools and Applications, 83 (14), 41213–41241. https://doi.org/10.1007/s11042-023-17046-6
  22. Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S. M., Mosavi, M. R. (2012). A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimedia Tools and Applications, 71 (3), 1469–1497. https://doi.org/10.1007/s11042-012-1292-9
  23. Dokku, N. S., David Amar Raj, R., Bodapati, S. K., Pallakonda, A., Reddy, Y. R. M., Krishna Prakasha, K. (2025). Resilient cybersecurity in smart grid ICS communication using BLAKE3-driven dynamic key rotation and intrusion detection. Scientific Reports, 15 (1). https://doi.org/10.1038/s41598-025-17530-z
  24. Khan, M. A., Sharif, M., Akram, T., Raza, M., Saba, T., Rehman, A. (2020). Hand-crafted and deep convolutional neural network features fusion and selection strategy: An application to intelligent human action recognition. Applied Soft Computing, 87, 105986. https://doi.org/10.1016/j.asoc.2019.105986
  25. Zhang, H., Wu, Q. J., Nguyen, T. M. (2013). Incorporating Mean Template Into Finite Mixture Model for Image Segmentation. IEEE Transactions on Neural Networks and Learning Systems, 24 (2), 328–335. https://doi.org/10.1109/tnnls.2012.2228227
  26. Pareschi, F., Rovatti, R., Setti, G. (2012). On Statistical Tests for Randomness Included in the NIST SP800-22 Test Suite and Based on the Binomial Distribution. IEEE Transactions on Information Forensics and Security, 7 (2), 491–505. https://doi.org/10.1109/tifs.2012.2185227
  27. Ullah, A., Jamal, S. S., Shah, T. (2017). A novel scheme for image encryption using substitution box and chaotic system. Nonlinear Dynamics, 91 (1), 359–370. https://doi.org/10.1007/s11071-017-3874-6
  28. Abdul, Y., Ramasamy, V., Kukaram, G., Boulaaras, S., Alharbi, A. (2025). A dynamic image encryption scheme through 2-D cellular automata and chaotic logistic map. Scientific Reports, 15 (1). https://doi.org/10.1038/s41598-025-21225-w
  29. Sharmila, S., Bhuvaneswaran, R. S., Vaithiyanathan, D. (2025). Secure image encryption using Rubik’s Cube-based scrambling with chaos-driven diffusion and circular shifts. Optik, 339, 172533. https://doi.org/10.1016/j.ijleo.2025.172533
  30. Hadžic, V., Bloem, R. (2024). Efficient and Composable Masked AES S-Box Designs Using Optimized Inverters. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2025 (1), 656–683. https://doi.org/10.46586/tches.v2025.i1.656-683
  31. Sharma, P. L., Gupta, S., Nayyar, A., Harish, M., Gupta, K., Sharma, A. K. (2024). ECC based novel color image encryption methodology using primitive polynomial. Multimedia Tools and Applications, 83 (31), 76301–76340. https://doi.org/10.1007/s11042-024-18245-5
  32. Kaushik, P., Attkan, A. (2021). A Chaotic and Hyperchaotic Map based Image Encryption Protocol for High-End Colour density Images using enhanced S-box pixel permutator. 2021 2nd International Conference on Computational Methods in Science & Technology (ICCMST), 174–180. https://doi.org/10.1109/iccmst54943.2021.00045
  33. Hermassi, H., Rhouma, R., Belghith, S. (2011). Improvement of an image encryption algorithm based on hyper-chaos. Telecommunication Systems. https://doi.org/10.1007/s11235-011-9459-7
  34. Ye, G., Wong, K.-W. (2012). An efficient chaotic image encryption algorithm based on a generalized Arnold map. Nonlinear Dynamics, 69 (4), 2079–2087. https://doi.org/10.1007/s11071-012-0409-z
  35. Song, C.-Y., Qiao, Y.-L., Zhang, X.-Z. (2013). An image encryption scheme based on new spatiotemporal chaos. Optik - International Journal for Light and Electron Optics, 124 (18), 3329–3334. https://doi.org/10.1016/j.ijleo.2012.11.002
  36. Zeng, J., Wang, C. (2021). A Novel Hyperchaotic Image Encryption System Based on Particle Swarm Optimization Algorithm and Cellular Automata. Security and Communication Networks, 2021, 1–15. https://doi.org/10.1155/2021/6675565
  37. Liu, H., Wang, X. (2011). Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Optics Communications, 284 (16-17), 3895–3903. https://doi.org/10.1016/j.optcom.2011.04.001
  38. Su, Y., Tang, C., Chen, X., Li, B., Xu, W., Lei, Z. (2017). Cascaded Fresnel holographic image encryption scheme based on a constrained optimization algorithm and Henon map. Optics and Lasers in Engineering, 88, 20–27. https://doi.org/10.1016/j.optlaseng.2016.07.012
  39. Abdullah, A. H., Enayatifar, R., Lee, M. (2012). A hybrid genetic algorithm and chaotic function model for image encryption. AEU - International Journal of Electronics and Communications, 66 (10), 806–816. https://doi.org/10.1016/j.aeue.2012.01.015
  40. Abbasi, A. A., Mazinani, M., Hosseini, R. (2020). Evolutionary-based image encryption using biomolecules operators and non-coupled map lattice. Optik, 219, 164949. https://doi.org/10.1016/j.ijleo.2020.164949
  41. Mahmud, M., Atta-ur-Rahman, Lee, M., Choi, J.-Y. (2020). Evolutionary-based image encryption using RNA codons truth table. Optics & Laser Technology, 121, 105818. https://doi.org/10.1016/j.optlastec.2019.105818
  42. Ghaz, A., Seddiki, A., Nouioua, N. (2022). Comparative Study of Encryption Algorithms Applied to the IOT. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 21, 469–476. https://doi.org/10.55549/epstem.1226679
  43. Ahmad, M., Alam, M. Z., Umayya, Z., Khan, S., Ahmad, F. (2018). An image encryption approach using particle swarm optimization and chaotic map. International Journal of Information Technology, 10 (3), 247–255. https://doi.org/10.1007/s41870-018-0099-y
  44. Kaur, M., Kumar, V. (2018). Beta Chaotic Map Based Image Encryption Using Genetic Algorithm. International Journal of Bifurcation and Chaos, 28 (11), 1850132. https://doi.org/10.1142/s0218127418501328
Development of image encryption method using surjective finite automata and custom S-box within the advanced encryption standard framework

Downloads

Published

2025-12-30

How to Cite

Barlybayev, A., Saukhanova, Z., Shakhmetova, G., Sharipbay, A., Raykul, S., & Khassenov, A. (2025). Development of image encryption method using surjective finite automata and custom S-box within the advanced encryption standard framework. Eastern-European Journal of Enterprise Technologies, 6(9 (138), 77–99. https://doi.org/10.15587/1729-4061.2025.348368

Issue

Section

Information and controlling system