Reducing the level of message compromise in information transmission systems to virtual private clouds using Shamir's scheme

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.348570

Keywords:

probability of message compromise, Shamir's secret distribution method, virtual private cloud

Abstract

This study investigates processes of message transmission via the Internet to a virtual private cloud using Shamir's scheme.

The evolution of the infocommunication infrastructure has led to an increase in the role of cloud services. As a result, the requirements for information protection along the paths of message delivery to the clouds are increasing.

The task addressed is to reduce the probability of compromising messages transmitted by a communication system.

The parameters of the information transmission system that affect the probability of compromise of messages transmitted to the virtual private cloud have been studied. The most vulnerable elements in the communication system were found. To practically implement the Shamir scheme via the Internet, the possibilities of using existing routing technologies were studied.

For information transmission systems with ideal nodes, the overall level of compromise significantly depends on the probability of compromise of one path element, especially for remote clouds. An increase in the probability of compromise on a single hop from 0.03 to 0.1 for 10 hops in a three-path system leads to an increase in the total compromise from 0.02 to 0.28.

Protecting intermediate nodes from attacks is critical for remote clouds. With 10 hops in a three-way communication system, the overall probability of compromise increases fourfold from 0.02 to 0.08 with the same impact of an individual node and hop.

Protecting end nodes for a communication system is of significant importance compared to nodes along the paths. The probability of compromise of end nodes, equal to 0.1, gives an increase in the total level of compromise from 0.03 to 0.21

Author Biographies

Artem Marchuk, Kharkiv National University of Radio Electronics

PhD

V.V. Popovskyy Department of Infocommunication Engineering

Tetiana Kovalenko, Kharkiv National University of Radio Electronics

PhD

V.V. Popovskyy Department of Infocommunication Engineering

Svitlana Shtangey, Kharkiv National University of Radio Electronics

PhD

V.V. Popovskyy Department of Infocommunication Engineering

Olena Linnyk, Kharkiv National University of Radio Electronics

PhD

Department of Physical Foundations of Electronic Engineering

References

  1. ISO/IEC 27011:2024. Information security, cybersecurity and privacy protection – Information security controls based on ISO/IEC 27002 for telecommunications organizations. Available at: https://www.iso.org/standard/80584.html
  2. ISO/IEC 27033-1:2024. Information technology - Security techniques - Network security - Part 1: Overview and concepts. Available at: https://www.evs.ee/en/evs-iso-iec-27033-1-2024
  3. Shamir, A. (1979). How to share a secret. Communications of the ACM, 22 (11), 612–613. https://doi.org/10.1145/359168.359176
  4. Lemeshko, O. V., Yeremenko, O. S., Yevdokymenko, M. O., Kovalenko, T. M. (2021). Metodyka rozrakhunku ymovirnosti komprometatsiyi konfidentsiynykh povidomlen pry bezpechniy marshrutyzatsiyi v infokomunikatsiynykh merezhakh z vykorystanniam shliakhiv, yaki peretynaiutsia. Problemy telekomunikatsiy, 2 (29), 15–27. Available at: https://pt.nure.ua/wp-content/uploads/2021/12/212_lemeshko_confidential.pdf
  5. Lemeshko, O., Yeremenko, O., Yevdokymenko, M., Shapovalova, A., Sleiman, B. (2022). Modeliuvannia ta optymizatsiya protsesiv bezpechnoi ta vidmovostiykoi marshrutyzatsiyi v telekomunikatsiynykh merezhakh. Kharkiv: KhNURE, 198. https://doi.org/10.30837/978-966-659-378-1
  6. Kato, T., Cheng, S., Yamamoto, R., Ohzahata, S., Suzuki, N. (2018). Proposal and study on implementation of data eavesdropping protection method over Multipath TCP communication using data scrambling and path dispersion. International Journal on Advances in Security, 11 (1&2), 118–126. Available at: https://personales.upv.es/thinkmind/dl/journals/sec/sec_v11_n12_2018/sec_v11_n12_2018_9.pdf
  7. Dani, V., Nagar, S., Pawar, V. (2022). An Analysis of Multipath TCP for Improving Network Performance. Innovations in Bio-Inspired Computing and Applications, 160–169. https://doi.org/10.1007/978-3-030-96299-9_16
  8. Popat, K., Kapadia, V. V. (2021). Multipath TCP Security Issues, Challenges and Solutions. Information, Communication and Computing Technology, 18–32. https://doi.org/10.1007/978-3-030-88378-2_2
  9. Chaturvedi, R. K., Chand, S. (2020). Multipath TCP security over different attacks. Transactions on Emerging Telecommunications Technologies, 31 (9). https://doi.org/10.1002/ett.4081
  10. Veni, S., Kadhar Nawaz, G. M. (2013). A new Approach to Enhance Security in MPLS network. International Journal of Computer Science and Network Security, 13 (2). Available at: https://scispace.com/pdf/a-new-approach-to-enhance-security-in-mpls-network-3wmckuoafr.pdf
  11. Alouneh, S., Agarwal, A., En-Nouaary, A. (2009). A novel path protection scheme for MPLS networks using multi-path routing. Computer Networks, 53 (9), 1530–1545. https://doi.org/10.1016/j.comnet.2009.02.001
  12. Ridwan, M. A., Radzi, N. A. M., Wan Ahmad, W. S. H. M., Abdullah, F., Jamaludin, Md. Z., Zakaria, M. N. (2020). Recent trends in MPLS networks: technologies, applications and challenges. IET Communications, 14 (2), 177–185. https://doi.org/10.1049/iet-com.2018.6129
  13. Čuřík, P., Ploszek, R., Zajac, P. (2022). Practical Use of Secret Sharing for Enhancing Privacy in Clouds. Electronics, 11 (17), 2758. https://doi.org/10.3390/electronics11172758
  14. Naz, M., Al-zahrani, F. A., Khalid, R., Javaid, N., Qamar, A. M., Afzal, M. K., Shafiq, M. (2019). A Secure Data Sharing Platform Using Blockchain and Interplanetary File System. Sustainability, 11 (24), 7054. https://doi.org/10.3390/su11247054
  15. Leon-Garcia, A. (2022). Probability, Statistics, and Random Processes for Electrical Engineering. Pearson, 650. Available at: https://www.goodreads.com/book/show/24331653-probability-statistics-and-random-processes-for-electrical-engineering
  16. Ross, S. M. (1997). Introduction to Probability Models. Academic Press. 702. https://www-elec.inaoep.mx/~rogerio/IntrodProbabModels.pdf
  17. Grimmett, G., Stirzaker, D. (2020). Probability and Random Processes. Oxford University Press, 688. Available at: https://global.oup.com/academic/product/probability-and-random-processes-9780198847595?cc=ua&lang=en&
  18. Types of Static Routes Explained. Available at: https://www.computernetworkingnotes.com/ccna-study-guide/types-of-static-routes-explained.html
  19. Static Routing vs. Dynamic Routing: What's the Difference? (2025). Available at: https://www.indeed.com/career-advice/career-development/dynamic-routing-vs-static-routing
  20. MPLS Configuration Guide, Cisco IOS XE 17.x. Available at: https://www.cisco.com/c/en/us/td/docs/routers/ios/config/17-x/mpls/b-mpls/m_mp-te-autotunnel-0.html
  21. Monge, A. S., Szarkowicz, K. G. (2015). MPLS in the SDN Era. O’RELLY, 920.
  22. Song L. (2022). Set Up Your Own IPsec VPN, OpenVPN and WireGuard Server (Build Your Own VPN). Amazon, 147. Available at: https://www.amazon.com/IPsec-OpenVPN-WireGuard-Server-Build/dp/B0BQ99KH38
  23. Bhalerao, V., Sarode, S. (2021). A Review Paper on MPLS L3 VPNs Architecture. International Journal of Scientific and Research Publications (IJSRP), 11 (6), 524–527. https://doi.org/10.29322/ijsrp.11.06.2021.p11469
  24. Goransson, P., Black, C. (2014), Software Defined Networks. A Comprehensive Approach. Elsevier, 436. https://doi.org/10.1016/c2013-0-00167-3
  25. ECMP. Available at: https://www.cisco.com/c/en/us/td/docs/security/cdo/cloud-delivered-firewall-management-center-in-cdo/managing-firewall-threat-defense-services-with-cisco-defense-orchestrator/m-routing-ecmp.pdf
  26. Equal Cost Multipath Load Sharing - Hardware ECMP. Docs Hub. Available at: https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-44/Layer-3/Routing/Equal-Cost-Multipath-Load-Sharing-Hardware-ECMP/
  27. AWS networking and content delivery. Additional ECMP Paths. Available at: https://000092.awsstudygroup.com/4-transitgatewayandvpn/4.4-ecmppaths/
Reducing the level of message compromise in information transmission systems to virtual private clouds using Shamir's scheme

Downloads

Published

2025-12-30

How to Cite

Marchuk, A., Kovalenko, T., Shtangey, S., & Linnyk, O. (2025). Reducing the level of message compromise in information transmission systems to virtual private clouds using Shamir’s scheme. Eastern-European Journal of Enterprise Technologies, 6(9 (138), 100–113. https://doi.org/10.15587/1729-4061.2025.348570

Issue

Section

Information and controlling system