An interval method for identifying equivalent engine load parameters

Authors

  • Микола Володимирович Костерєв National technical university of Ukraine “Kyiv polytechnic institute” Peremohy avenue 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-5601-2607
  • Володимир Валерійович Літвінов Zaporizhia State Engineering Academy Lenin avenue 226, Zaporizhia, Ukraine, 69006, Ukraine https://orcid.org/0000-0003-1974-0976

DOI:

https://doi.org/10.15587/1729-4061.2015.36756

Keywords:

asynchronous engine, equivalent circuit, load node, interval estimation, genetic algorithm

Abstract

We have devised a method for identifying parameters of an equivalent circuit for an equivalent asynchronous engine in the load node of the energy system. The suggested method uses available for measurement load node parameters as input information. An advantage of the method consists in identifying intervals for each parameter of the equivalent circuit. This allows considering the change of engines’ composition in the load node as well as the change of their wear-out characteristics.

The obtained optimization task has a complex structure since there are many restrictions in the form of inequalities; that is why it is solved by means of a genetic algorithm. The latter applies genetic operators for “hybridization” and “mutation”. Determined parameter values of an engine equivalent circuit can be identified within the obtained intervals at any moment with the help of the formed reverse optimization task that is also solved by means of the genetic algorithm.

The devised method should be used for solving the tasks of risk-oriented electrical power systems management, for calculating their regimes on-line, and for predictive calculations.

Author Biographies

Микола Володимирович Костерєв, National technical university of Ukraine “Kyiv polytechnic institute” Peremohy avenue 37, Kiev, Ukraine, 03056

Doctor of Science, Professor

Central Power Plants Department

Володимир Валерійович Літвінов, Zaporizhia State Engineering Academy Lenin avenue 226, Zaporizhia, Ukraine, 69006

Philosophy Doctor in Electrical Engineering, Associate Professor

Hydro Power Department

References

  1. Litvinov, V. V. (2012). Otsinka ryzyku porushennia stiikosti dvygunovogo navantazhennia pry vidmovah elektroobladnannia v pidsystemi EES. Avtoreferat disertatsii na zdobuttia naukovogo stupenia kandydata tehnichnyh nauk, Kyiv, 20.
  2. Ciapessoni, E., Cirio, D., Gagleoti, E. (2008). A probabilistic approach for operational risk assessment of power systems. CIGRE, С4–114.
  3. Balzer, G., Bakic, K., Haubrich, H.-J. (2006). Selection of an optimal maintenance and replacement strategy of HV equipment by a risk assessment process. CIGRE, B3–103.
  4. Handschin, E., Jurgens, I., Neumann, C. (2008). Long term optimization for risk-oriented asset management. 16th Power Systems Computation Conference, Glasgow.
  5. Koniuhova, E. A. (1998). Vybor moshchnosti batarei kondensatorov v tsehovyh setiah promyshlennyh predpriatii s uchetom rezhimov napriazhenia. Elektrichestvo, 1, 18–25.
  6. Gurevich, Y. E., Libova, L. E., Hachatrian, E. A. (1981). Ustoichivost nagruzki elektricheskih sistem. Moskow: Energoizdat, 209.
  7. Tuzhik, S. K. (1968). K ekvivalentirovaniu asinhronnoi nagruzki. Electromehanika, 10, 1105–1108.
  8. Abdel Hakim, M. M., Berg, G. J. (1976). Dynamic single-unit representation of induction motor groups. IEEE Trans. on Power Apparatus and Syst., 95 (1), 155–165. doi:10.1109/t-pas.1976.32088
  9. Kosterev, N. V., Denisiuk, P. L. (1977). Otsenivanie parametrov asinhronnoi mashiny. Modelirovanie i raschet na CVM rezhimov energeticheskih system, Kiev, Naukova dumka, 66–75.
  10. Sivokobylenko, V. F. Lebedev, V. K. (2002). Perehodnye processy v sistemah elektrosnabzhenia sobstvennyh nuzhd elektrostancii. Donetsk, DonNTU, 136.
  11. Moshchinskii, Y. A. Bespalov, V. Y., Kiriakin, A. A. (1998). Opredelenie parametrov shemy zameshchenia asinhronnoi mashiny po katalozhnym dannym. Elektrichestvo, 4, 38–42.
  12. Lehtla, T. (1996). Parameter identification of an induction motor using fuzzy logic controller. PEMC '96, Budapest, 3, 292–296.
  13. Bilski, P. (2012). Identification of induction machine parameters using support vector machines. XX IMEKO World Congress Metrology for Green Growth, Busan.
  14. Marku, M., Utu, I., Pana, L., Orban, M. (2004). Computer simulation of real time identification for induction motor drives. ICTAMI Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics, Thessaloniki, 295–305.
  15. Gladkov, L. A., Kureichik, V. V., Kureichik, V. M. (2009). Bioinspirirovannye metody v optimizatsii. Moskva, Fizmatlit, 384.
  16. Balas, E., Niehaus, W. (1996). Finding large cliques in arbitrary graphs by bipartite matching. Cliques, coloring, and satisfiability. DIMACS Discrete Mathematical Theoretical Computer Science, 26, 29–49.
  17. Terano, T. (1993). Prikladnye nechetkie sistemy. Moskva, Mir, 368.

Published

2015-02-27

How to Cite

Костерєв, М. В., & Літвінов, В. В. (2015). An interval method for identifying equivalent engine load parameters. Eastern-European Journal of Enterprise Technologies, 1(3(73), 15–20. https://doi.org/10.15587/1729-4061.2015.36756

Issue

Section

Control processes