Design of the intelligent control system traction drives

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.39415

Keywords:

Electrical Complex, traction drive, method, neural network, Particle swarm optimization

Abstract

This paper studies for the creation of intellectual control system for electric traction. The analysis was further developed methodology development of intelligent control systems for electric vehicles by developing a neural network systems using swarm intelligence for optimum traction rolling electrical complex that lets you set partial traction by means of electric transmission with minimum mean square error values. The paper presents the intellectual electric traction control system based on the following sequence: synthesis control system to provide the necessary connection between the parameters of the dynamics and traction characteristics necessary traction motors using Particle swarm optimization, which makes it impossible to establish a clear connection between the parameters of traction dynamics and the desired characteristics of traction motors; development of appropriate neural network technology to ensure the functioning of the developed system.

Author Biographies

Дмитро Олександрович Кулагін, Zaporizhzhya national technical University street Zhukovsky 64, Zaporozhye, Ukraine, 69063

Candidate of technical Sciences, associate Professor, doctoral student

The Department "Power Supply of industrial enterprises"

Ігор Сергійович Роменський, Zaporizhzhya national technical University street Zhukovsky 64, Zaporozhye, Ukraine, 69063

graduate student

The Department "Power Supply of industrial enterprises"

References

  1. Florentsev, S. N., Izosimov, D. B. (2010). Tyagovyi elektroprivod v gibridnykh transportnykh sredstvakh. Part 3. Razrabotki KTEO dlya gibridnykh transportnykh sredstv v kontserne «RUSELPROM». Elektronnye komponenty, 1, 62–65.
  2. Florentsev, S. N. (2009). Traction Electric Equipment Set for AC Electric Transmission. Various Vehicles Proceedings of International Exhibition & Conference “Power Electronics, Intelligent Motion. Power Quality (PCIM-2009). Nurenberg. Germany, 625–627.
  3. Efremov, I. S. (1984). Teoriya i raschet tyagovogo privoda elektromobilei. Vyssh. shk., 383.
  4. Kulagin, D. O. (2014). Proektuvannia system keruvannia tiahovymy elektroperedachamy motorvahonnykh poizdiv. Berdiansk: FO-P Tkachuk O. V., 154.
  5. Kulagin, D. O. (2014). Matematychna model tiahovoho asynkhronnoho dvyhuna z urakhuvanniam nasychennia mahnitnykh kil. Naukovyi visnyk NGU, 6, 103–110.
  6. Kulagin, D. O. (2004). Matematychna model tiahovoho asynkhronnoho dvyhuna z urakhuvanniam nasychennia. Tekhnichna elektrodynamika, 6, 49–55.
  7. Safonov, A. I. (2012). Obosnovanie tyagovoi kharakteristiki, problema vybora elektrodvigatelya i vspomogatel'nykh istochnikov energii trolleibusam, Vestnik Belorussko-Rossiiskogo universiteta, 3, 72–81.
  8. Kennedy, J., Eberhart, R. (1995). Particle swarm optimization, Proceedings of IEEE International conference on Neural Networks, 1942–1948. doi: 10.1109/icnn.1995.488968
  9. Kartamyshev, D. A., Vlasov, K. A., Chastikova, V. A. (2014), Obnaruzhenie ddos-atak na osnove neironnykh setei s primeneniem metoda roya chastits v kachestve algoritma obucheniya, Fundamental'nye issledovaniya, 8-4, 829–832.
  10. Moody, J., Darken, C. J. (1989). Fast learning in networks of locally tuned processing units, Neural Computation, 1 (2), 281–294. doi: 10.1162/neco.1989.1.2.281

Published

2015-04-20

How to Cite

Кулагін, Д. О., & Роменський, І. С. (2015). Design of the intelligent control system traction drives. Eastern-European Journal of Enterprise Technologies, 2(9(74), 41–46. https://doi.org/10.15587/1729-4061.2015.39415

Issue

Section

Information and controlling system